Publications

  1. Modeling the subsurface adsorption of atomic oxygen in silver from high vacuum to high pressure. C. Mize, L. Crosby, E. Lander, and S. Roy*, Phys. Chem. Chem. Phys., 2025, 27, 7816.

  2. Semiempirical molecular-orbital calculations of dissociation energies of small molecules containing light elements. R. W. Smithwick III* and S. Roy, Mol. Phys., 2024, 122, e2298242.

  3. Toward asymmetric aziridination with an iron complex supported by a D2-symmetric tetra-NHC. K. Blatchford, C. Mize, S. Roy, and D. Jenkins*, Dalton Trans. 2022, 51, 6153.

  4. Insight into subsurface adsorption derived from a lattice-gas model and Monte Carlo simulations. C. Mize, L. Crosby, S. Isbill, and S. Roy*, J. Phys. Chem. C 2022, 126, 5343.

  5. Redox potential as a predictor of polyethylene branching using nickel α-diimine catalysts. A. Doerr, M. Curry, R. Chapleski, J. Burroughs, E. Lander, S. Roy*, and B. Long*, ACS Catal. 2022, 12, 73.

  6. Interfacial acidity on the strontium titanate surface: A scaling paradigm and the role of the hydrogen bond. R. Chapleski, A. Chowdhury, K. Mason, R. Sacci, B. Doughty, and S. Roy*, Phys. Chem. Chem. Phys. 2021, 23, 23478. Featured on the front cover and in the “2021 PCCP Hot Articles” themed collection.

  7. A mechanistic study of microstructure modulation in olefin polymerization using a redox-active Ni(II) α-diimine catalyst. R. Chapleski, J. Kern, W. Anderson, B. Long, and S. Roy*, Cat. Sci. Technol. 2020, 10, 2029. Featured in the “2020 Catalysis Science and Technology Hot Articles” themed collection.

  8. Elucidation of the reaction mechanism of C2+N1 aziridination from tetracarbene catalysts. S. Isbill, P. Chandrachud, J. Kern, D. Jenkins* and S. Roy*, ACS Catal. 2019, 9, 6223.

  9. Catalytic aziridination with alcoholic substrates via a chromium tetracarbene catalyst. C. Keller, J. Kern, B. Terry, S. Roy, and D. Jenkins*, Chem. Commun. 2018, 54, 1429.

  10. Structure of oxidized silver (111) and (110) surfaces. S. Isbill, S. Roy, and D. Keffer*, Mol. Simul. 2017, 43:5-6, 355.

  11. Chemistry at molecular junctions: Rotation and dissociation of O2 on the Ag(110) surface induced by a scanning tunneling microscope. S. Roy, V. Mujica, and M. Ratner*, J. Chem. Phys. 2013, 139, 074702.

  12. Catalysis by a zinc-porphyrin-based metal-organic framework: From theory to computational design. S. Roy, C. George, and M. Ratner*, J. Phys. Chem. C 2012, 116, 23494.

  13. Dynamical steering and electronic excitation in NO scattering from a gold surface. N. Shenvi†, S. Roy†, and J. Tully*, J. Phys. Chem. C 2012, 116, 23494. †Equal contributors

  14. Dynamics of open-shell species at metal surfaces. S. Roy, N. Shenvi, and J. Tully*, J. Phys. Chem. C 2009, 113, 16311. Centennial Feature Article.

  15. Nonadiabatic dynamics at metal surfaces: Independent-electron surface hopping N. Shenvi, S. Roy, and J. Tully*, J. Chem. Phys. 2009, 130, 174107.

  16. Model Hamiltonian for the interaction of NO with the Au(111) surface. S. Roy, N. Shenvi, and J. Tully*, J. Chem. Phys. 2009, 130, 174716.

  17. Accommodation of gases at rough surfaces. N. Mateljevic, J. Kerwin, S. Roy, J.R. Schmidt, and J. Tully*, J. Phys. Chem. C 2009, 113, 2360.

  18. Vibrational relaxation of NO on Au(111) via electron-hole pair generation. N. Shenvi, S. Roy, P. Parandekar, and J. Tully*, J. Chem. Phys. 2006, 125, 154703.

  19. Melting of 55-atom Morse clusters. P. Shah, S. Roy, and C. Chakravarty*, J. Chem. Phys. 2003, 118, 10671.

Department of Chemistry

1420 Circle Drive
Knoxville, TN 37996
USA

Header

Contact

Dr. Sharani Roy
(865) 974-8825
sharani.roy@utk.edu

University%20 %20HorizRightLogo OnDark%20%28RGB%29