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ABSTRACT 
We study a two locus model, with additive contributions to the phenotype, to explore the dynamics of 

different phenotypic  characteristics under stabilizing  selection and recombination. We demonstrate that 
the interaction of selection and recombination results in constraints on the mode of phenotypic  evolution. 
Let Vg be the genic  variance of the trait and C, be the contribution of linkage  disequilibrium  to the 
genotypic  variance. We demonstrate that,  independent of the initial conditions, the dynamics of the system 
on the plane ( Vg, C,) are typically characterized by a quick approach to a straight line with  slow evolution 
along this line afterward. We  analyze  how the mode and the rate of phenotypic  evolution depend  on the 
strength of selection  relative  to recombination, on the form of fitness function, and the difference in  allelic 
effect. We argue that if selection is not extremely weak relative to recombination, linkage  disequilibrium 
generated by stabilizing  selection influences the dynamics  significantly. We demonstrate that under these 
conditions, which are plausible in nature and certainly the case in artificial  stabilizing  selection  experi- 
ments, the model can have a polymorphic equilibrium with  positive linkage  disequilibrium that is stable 
simultaneously with monomorphic equilibria. 

M OST studies of the dynamics  of quantitative char- 
acters have emphasized the ‘classical’  case ofweak 

selection on a  character  controlled by a large number of 
loci [reviewed in BARTON and TURELLI (1989)l. Yet, as 
reviewed in ORR and COYNE ( 1  992), the evidence that 
quantitative characters  are  controlled by many loci is not 
compelling-the possibility that many quantitative traits 
are  controlled by only a few loci cannot  be  ruled out. In 
this case, selection on  the individual loci underlying the 
trait may, in fact, be  quite  strong, so the  role of recom- 
bination may be significant. Thus, studies of multilocus 
models where the fitnesses are chosen to reflect a  quan- 
titative trait may be vital for understanding  the behavior 
of natural systems. 

However, the overwhelming majority  of theoretical 
studies of the  relationship between selection and recom- 
bination using multilocus population genetics models 
have focussed on equilibrium behavior [reviewed in 
HASTINGS (1989) and NAG- (1992)l. Studies of  dy- 
namics, both theoretical and experimental, may prove 
much  more informative, especially if it  cannot  be a s  
sumed  that systems are  at equilibrium. Questions such 
as “How long  does  it take to  approach  an  equilibrium?” 
and  ‘What can be said about characteristics of the mul- 
tilocus  system during  the  transient  period?” have  usually 
not  been  considered. The notable exceptions are  the 
studies by LEWONTIN (1964), NAGW (1976,1977,1978, 
1993) and HOPPENSTEAD (1976). These questions, how- 
ever, become very important if, for example, the time to 
reach  the  equilibrium is longer  than  the time interval 
during which the fitnesses can be  considered as con- 
stants. For example, questions of  dynamics become 
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paramount in any attempt to relate the predictions of 
the genetic models to laboratory experiments studying 
the dynamics  of quantitative characters under selection 
[reviewed in HILL and CABALLERO (1992)l. 

Modeling of  dynamics has recently attracted  attention 
in quantitative genetics (e .g . ,  WAGNER 1984; BURGER 
1986; KIRKPATRICK and LANDE 1989; LANDE 1991; BURGER 
and LYNCH 1994). The emphasis of these studies has 
mainly been on  the behavior of the  mean values  of quan- 
titative traits while the variances (and covariances) are 
assumed to be constant. To justify this simplification an 
assumption ofweak selection is invoked.  However, when 
applying population genetics models to quantitative 
traits, particularly when considering experiments, the 
relevant circumstance is  typically strong selection. 
Strong selection seems also to  be typical in natural popu- 
lations (ENDLER 1986). Our previous  analysis of some 
selection regimes (GAVRILETS 1993; GAVRILETS and 
HASTINGS 1993, 1994a) has shown that qualitative and 
quantitative characteristics of equilibria under strong se- 
lection are  quite different from those under weak 
selection. We  may expect that  the same is true with  re- 
spect to  the dynamics. 

Several studies with direct analyses  of the dynamics  of 
the genetic variances have been published. BCJRGER 
(1993) has analyzed the dynamics of  different  pheno- 
typic characteristics of a quantitative trait (including  the 
genotypic variance) under directional selection. In his 
model all the phenotypic changes are  attributed to the 
changes in allele frequencies, while, because of a specific 
form of the fitness function, recombination does not 
influence  the dynamics and linkage disequilibrium is 
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absent. BULMER (1971, 1980) has developed a comple- 
mentary approach based on specific assumptions about 
the phenotypic and genotypic distributions [see TURELLI 
(1988) and GAVRILETS and HASTINGS (1994b) for a mul- 
titrait generalization].  In  the resulting model the 
change in the genotypic variance is attributed to the 
change in linkage disequilibrium, while, because of the 
assumption about  a very large number of  loci  with  small 
effects, the allele frequencies do  not change. CHEVALET 
(1988) generalized this approach  for  the case where the 
number of loci, alleles, as well as the  population size can 
be finite. Nevertheless, this analysis  still has two limita- 
tions. The first is that CHEVALET'S approach (as well as 
BULMER'S) describes the dynamics of unlinked loci and 
it is not clear how to generalize it for  the case  of linked 
loci. The second is that this approach is  heavily  based on 
the assumption of a multivariate normal distribution of 
the effects  of the loci. This assumption, although typical 
in quantitative genetic models, still has to  be justified 
(TURELLI 1984). 

Thus, theoretical approaches which include linkage 
disequilibrium, as would be  generated by strong selec- 
tion, and focus on dynamics rather  than equilibrium 
behavior, are  needed.  In this study, we begin such a pro- 
gram of investigation, looking at  the dynamics  of  stabi- 
lizing selection within the realm of  two-locus models. 
Using a combination of approximate  methods we shall 
obtain  a  quite complete picture of the dynamics, both in 
terms of allele frequencies  and disequilibrium, as  well  as 
quantitative genetics parameters such as the  mean or the 
variance. Our approach is also relevant to  a  recent em- 
phasis on bridging the gap between multilocus popu- 
lation genetics and quantitative genetics (TURELLI and 
BARTON 1990). The structure of this report is  as  follows. 
In  the  next section, we formulate  a  general model of 
stabilizing selection on  an additive trait controlled by 
two diallelic loci. Then we consider the case of quadratic 
stabilizing selection and equal  contributions of loci, 
where the analysis  is the easiest and most complete. 
We then generalize these results by allowing other forms 
for the fitness function  but still assuming equal con- 
tributions of the two loci. Finally we consider cases 
of quadratic stabilizing selection with unequal locus 
contributions. 

GENERAL MODEL 

We begin with a description of a  general model of 
stabilizing selection on  an additive quantitative trait de- 
termined by  two diallelic loci.  Assume that  the alleles at 
locus i have  effects a,/2 and -ai/2, and  that ai # 0. We 
designate the larger of the ai as a1 and, without loss of 
generality, assume that a1 = 1, so that ap is the ratio of 
the effects of the alleles at the two loci. Let xl, x p ,  xg and 
x, be the frequencies of the gametes with the effects 
z1 = (1 + a,)/2, z2 = (1 - a,)/2, z3 = (-1 + a,)/2 and 
z,  = (- 1 - ap)  /2 on  the trait. We shall use the  standard 

notation for these gametes: AB,  Ab,  aB, and ab. We  as- 
sume that  the fitness depends only on genotypic value 
so that the fitness, wv of an individual formed by ga- 
metes i and j and having phenotype zi = zi + zj can be 
represented as 

where w is the fitness function. We assume that  the fit- 
ness function w ( z )  has  its optimum at zo, decreases 
monotonically from its optimum,  and is symmetric 
about  it, i .e . ,  w (  z - zo) = w (  zo - z) ; we scale w (  z) so 
that w (  zo) = 1.  In this paper we shall  assume that 
the  optimum phenotype zo is zero, i. e . ,  it coincides with 
that of a  double heterozygote. The effects  of deviation 
of z,, from zero on the  properties of equilibria have been 
analyzed  in previous work (HASTINGS and HOM 1990; 
GAVRILETS and HASTINGS 1993). Let w, = wl1xI and 
W = zi wix, be  the marginal fitness of gamete i and the 
mean fitness of the  population. The dynamics  of the 
gamete  frequencies under selection and recombination 
are described by the  standard relations 

where ris  the  recombination  rate, D = xlx4 - %x3 is 
the  standard linkage  disequilibrium, and wI4 is the 
fitness of a  heterozygote at  both loci, w14 = w ( 0 ) .  In 
(2) the sign is minus  for i = 1 and 4 and is plus for 
i = 2 and 3. 

Our analysis will present results in terms of quantita- 
tive genetics parameters, such as the mean value  of the 
trait, i, the genic variance, Vg, and  the  contribution of 
the linkage disequilibrium, C,, to the genotypic variance 
of the trait under selection and recombination. Let pi be 
the frequency of the allele at  the  ith locus that increases 
the trait value (allele A at  the first locus, and allele B at 
the second locus), qi = 1 - p i .  Then 

1 

The genotypic variance of the trait G = Vg + C,. The 
genic variance Vg is the genotypic variance that  the  cur- 
rent allele frequencies would produce if the population 
were  in linkage equilibrium. In  the  extreme case of no 
selection, Vg does  not  change from generation to gen- 
eration, while the absolute value of C, is reduced to zero 
by recombination. We  will analyze the model (2) under 
different assumptions about  the form of the fitness func- 
tion, w, and the relative contribution, a? of the two loci 
to the trait. 
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TABLE 1 

Fitness values under  quadratic stabilizing selection  with  equal 
contributions of the loci and zo = 0 

BB  Bb bb 

AA 1 - 4s 1 "s 1 
Aa 1 - s  1 1 - s  
aa 1 1 "s 1 - 4s 

DYNAMICS UNDER QUADRATIC  STABILIZING 
SELECTION WITH EQUAL CONTRIBUTIONS 

OF THE LOCI 

In this section we shall assume that  the  contributions 
of the loci are  equal, L e . ,  that a' = 1. Let the fitness 
function w ( z )  be a quadratic 

W(%) = 1 - szz, (4) 

where s is the  parameter measuring the  strength of  se- 
lection. Under  quadratic stabilizing selection (4) the 
mean fitness of the  population  can  be  represented as 
zl, = 1 - s( G + 2'). The fitnesses of different genotypes 
in this model  are given in Table 1. In this case the equi- 
librium structure is simple: the system  evolves to one of 
the two monomorphic equilibria corresponding  to  the 
fixation of gamete A b  or aB. What can be said about  the 
dynamics  of the phenotypic characteristics (3)? 

The dynamics of the system can be elucidated because 
there are different timescales in the  problem, even  with- 
out making an assumption of  weak selection. Details  of 
our computations  are in APPENDIX A. First we introduce 
new  variables (KARLIN and FELDMAN 1970) 

u = x, - x4, 

v = $ - % ,  (5) 

t = a j + x 4 - % - 3 E g .  

In terms of these variables the phenotypic characteristics 
(3) are 

i=  2u, ( 6 4  

v , = l - u 2 - 3 ,  (6b) 

c, = t - u' + vz. (6c) 

Using these variables one can show that  the  change in 
the mean value  of the trait in one generation is 

Here we would  like to emphasize two points. The first is 
that this equation is exact. The second is that surprisingly 
it is quite  different from the  equation A i  = - ( S s / G ) G f  
that one would derive from  the  standard  formula in 
quantitative genetics A i  = G(d In z i j /d i )  (LANDE 1979). 

In  our model the variable u, and  hence  the  mean of 
the trait Z, monotonically evolves to zero (HASTINGS 
1987). In APPENDIX A we  show that u approaches zero 

quickly and  hence 

i + 0 quickly. (8) 

In  other words, the evolution of the mean proceeds 
much faster than  the evolution of other phenotypic 
characteristics ( c )  BULMER 1980), so that after a short 
time the absolute value  of the mean is extremely small, 
and  the  other phenotypic characteristics have changed 
little. 

We then  concentrate on  the dynamics  of Vg and C,, 
under the assumption that i = 0. Note that if the op- 
timum value  of the trait is about  the  population mean 
(a condition usually met in stabilizing selection experi- 
ments),  then i - 0 from the beginning. The changes 
in V and C, in one generation  are AVg = -2vAv - 
(Av? = -2vAv, and AC, = At + 2vAv + (Av)' = At + 
2vAv, where we have assumed that  the  change in v in 
one generation satisfies Av << 1. We can now use phase- 
plane  methods to study these dynamics ( e .g . ,  CODDING 
TON and LEVINSON 1955).  It is useful to approximate the 
dynamics in this phase plane by a differential equation 
to simplifjr the analysis. The qualitative features of the 
dynamics are  not  altered by this change to continuous 
time. Dividing AC, by AVg and substituting the differ- 
ential ratio dC,/dVg for the difference ratio AC,/AVg, 
we get  the first order differential equation 

dC, - -?6, - 1/S(v: - c:) 
dVg -s(l - \)(Vg + C,) ' 

that approximates the dynamics  of the  components of 
the genotypic variance on  the phase-plane ( Vg,  C,). 
Note that  the variables Vg and C, satisfy 

" (9) 

0 5 v," 1, -5' C L 5  (1 - (10) 

The first inequality is obvious,  while the second guar- 
antees  the non-negativity  of the  gamete frequencies at 
i = 0. In APPENDIX B, we describe the detailed phase-plane 
analysis  of (9),  and we merely highlight some of the 
results here. 

The most important  and surprising feature of the dy- 
namics of (9) is that in the phase-plane the system 
quickly  evolves to a line  along which the dynamics are 
slower (see Figure 1 and APPENDIX B) . The line to which 
the system  evolves  is  very  close to the straight line given 
by the  equation C, = OVg, where 0 < 0. It  connects two 
equilibria of (9):  the stable equilibrium (0,O) and  the 
unstable equilibrium (1, 0).  The former  corresponds to 
the stable monomorphic equilibria of ( 2 )  with fixation 
of gamete Abor d. The latter corresponds to the unstable 
polymorphic  equilibrium of ( 2 )  with  allele frequencies of 
one half and a negative  linkage  disequilibrium of D = 0/4. 
At this equilibrium the contribution of linkage disequilib 
rium to the genotypic  variance is 

e = r / s  - d m .  
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If selection is  very  weak (ie., if s << r) , then 8 = 0, and the 
dynamics of the system correspond to that one studied by 
NAGW (1976, 1977, 1978, 1993) and HOPPENSTEAD 
(1976): there is a quick  movement  towards the so-called 
“quasi-linkage equilibrium” state with  slow evolution of  al- 
lele frequencies afterward. Our findings show that a similar 
separation  of  timescales  takes  place  in general even  with- 
out assuming  weak  selection ( Q CHEVALET 1988). However, 
the population is not  at linkage  equilibrium  (unless s << r )  . 
In our model, the population evolves to a monomorphic 
state, but during the evolution  it is characterized by some 
level  of  negative linkage  disequilibrium.  While both the 
genic  variance % and the contribution of  linkage  disequi- 
librium C, decrease, their ratio CJ Vg is about the same as 
at the unstable  polymorphic equilibrium. Even moderately 
strong selection is sufficient to produce high levels of link- 
age  disequilibrium at this  state (GAVRILETS 1993). This equi- 
librium is unstable but nevertheless determines the mode 
and as we shall  see  below the rate of the evolution. If one 
ceases  selection, than we expect to observe an increase  in 
the genotypic  variance to the level  of the genic  variance as 
recombination destroys  negative  linkage  disequilibrium. 
The fact that the ratio CJV, does not change with  time 
implies that the ratio of the genotypic  variance  after  all 
disequilibrium was destroyed to the genotypic  variance at 
the moment when  selection  stops, is independent of the 
time  when  selection was ceased (and equals 1 / (1 + 8) ) . 

The existence of different timescales in the model 
allows us  to analyze the  rate of evolution directly (CJ: 
CHEVALET 1988). As soon as a  trajectory  approaches 
the  line C, = 8Vg, we can assume that C, = OV,. Ap- 
proximating  the  change in the  genic  variance  in  one 
generation AV, by the derivative dVg/dT, we get a 
single equation  that describes how Vg changes with 
time T: 

dV - SV&l - V,) 
-g = 
dT 1 - SVE . (12) 

where S = s(1 + 8) is a single parameter  that  deter- 

FIGURE 1 .-The  dynamics 
under  quadratic  stabilizing  se- 
lection  with  equal  contribu- 
tions of the  loci  for s = 0.15, 
T = 0.1 and 8 = -0.54. (a) 
The  phase-portrait of (9); 
the  dashed  lines  indicate  the 
phase-plane  defined by (10). 
(b) Exact trajectories of (2) on 
the  plane ( Vg., C,) for different 
initial  conditlons. 

0.5 1 .o 
v g  

mines the  rate of evolution.  Note that  the  denomi- 
nator  in  the  right-hand side of (12) is the mean  fitness 
of the  population  evaluated  at i = 0 and C, = 8Vg. 
Equation (12) has a simple integral 

where cis a  constant  that  depends on the  initial  con- 
ditions. One can use (13) to  find  the  time  that  it takes 
to  reach some specified level  of the  genic variance 
starting  from some other specified level. Figure 2A 
illustrates the  dependence of the  rate of evolution on 
S. Figure 2B shows  how S depends  on  the  strength of 
selection s and  the  recombination  rate r. We see that, 
as expected,  both  strong  selection  and loose linkage 
increase  the  rate of evolution.  These Figures show that 
if the loci are moderately  linked (say, with r 5 O.l), 
even strong  selection  can  require  more  than  a  hun- 
dred  generations to  change  the  genic variance sig- 
nificantly. Using the fact that  along  the  line C, = OV,, 
C , = 8 V , , G ~ ( 1 + 8 ) V , , a n d W = 1 - s ( l + 8 ) V g , w e  
can also use Equations 12 and 13 for analyzing the 
dynamics of linkage  disequilibrium, of the  genotypic 
variance and of the  mean fitness of the  population. 

OTHER  MODELS OF STABILIZING  SELECTION 

Although our analysis  is most complete in the case  of 
equal locus contributions  and quadratic selection, sub- 
stantial progress is possible in the analysis of other cases. 

Equal contributions of the loci, arbitrary fitness func- 
tion: In this section we again assume the locus contri- 
butions  are  equal,  but  the form of fitness function is 
arbitrary. If a2 = 1, then  the genotypic value can only be 
equal  to 0,  T1,  T2, and  the fitness function  can  be 
completely  characterized  using only two parameters, 
p w ( 0 )  - w(T1) and 6 = w ( 0 )  - w(T2), p 5 6 
(Table 2) .  The resulting fitness model is a special case 
of the  general symmetric model  (see  Table 3) studied 
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RGURE 2.-Influence  of the parameters of the model on the rate of evolution. (A) The time that  it takes to change the genic 
variance Vg from 0.95 to 0.05, from 0.9  to 0.1, and from 0.75 to  0.25  respectively. (B) The value  of S as function of the intensity 
of selection s and  the recombination rate r. 

in a number of papers (e.g., BODMER and FELSENSTEIN Result 1: If 2p 5 8, then the only  possible  stable  equi- 
1967; KARLIN and FELDMAN 1970). This special  case libria  are  fixation  equilibria xr = 1 or xs = 1.  I f 2 p  > 
has not been analyzed  in detail. The following result S and  selection  is  sufficiently  strong  relative to linkage, 
summarizes the properties of stable  equilibria of (2) then in  addition to  these fixation  equilibria  which 
in  this model. remain  stable, there exists a locally  stable  polymorphic 
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TABLE 2 

Fitness  values  under  arbitrary  symmetric stabilizing selection with 
equal  contributions of the loci and zo = 0 

BB Bb 66 

AA 1 - 6  1 - P  I 
A a  1 - P  1 1 - P  
aa 1 1 - P  1 - 6  

TABLE 3 

Fitness  values in the symmetric  fitness  model 

BB Bb bb 

AA 1 - 6  1 - P  
A a  

1-CY 

aa  1-CY 1 - P  1 - 6  
1 - Y  1 1 - Y  

equilibrium  with  allele  frequencies  equal to one half  and 
positive  linkage  disequilibrium. 

In APPENDIX A, we present  the proof of this Result and 
describe how the  properties of the equilibria and  the 
outcome of the evolution depend  on  the parameters. 
The stable polymorphic equilibrium whose existence 
was stated in Result 1 deserves to  be discussed in some 
detail. Previously we have  shown that if the  contributions 
of the loci are  different,  than  strong stabilizing selection 
can maintain variability in two ( GAWULETS and HASTINGS 

1993) or many  (GAVRILETS and HASTINGS 1994a) loci.  Re- 
sult 1 shows that  the assumption about non-equal con- 
tributions of the loci is not necessary. The condition 
2p > S means that on the  plane (z, w ( z ) )  the  point 
(1, w ( 1 ) )  lies  below the straight line that  connects  the 
points (0, 1) and (2, w ( 2 ) ) ,  i .e.,  w ( z )  isconvex.Thiscan 
be satisfied, for example, in  the case of a double  trun- 
cation or if w (  z )  is a Gaussian fitness function.  The poly- 
morphic equilibrium exists simultaneously with two 
monomorphic equilibria and, hence,  the  outcome of 
evolution depends  on  the history. Contrary to what in- 
tuition about selection on a quantitative trait would  sug- 
gest, this equilibrium has a large level  of positive linkage 
disequilibrium, i . e . ,  there is an excess  of gametes in the 
coupling phase. The  population evolves to this equilib- 
rium only if initially the  population is characterized by 
a high level  of  positive linkage disequilibrium, i .e.,  the 
gamete pool consists  mainly  of gametes AB and ab with 
a small proportion of gametes A b  and aB. Such “initial 
conditions”  are plausible in selection experiments when 
the line subject  to  selection is produced from the initial 
cross of two highly inbred lines  (with the genotypes AB/AB 
and ab/ab) . In other cases the population evolves to  mono- 
morphic equilibria. A possibility  of simultaneous  stability of 
a polymorphic equilibrium and monomorphic equilibria 
in a different special  case of the general symmetric model 
was demonstrated in (FELDW and LIBEW 1979). 

If the  contributions of the loci to the trait are equal, 
the mean value  of the trait imonotonically evolves to the 

1 .o 

0.5 1 

v, 

FIGURE 3.-The  phase-portrait of (14) for r = 0.01, p = 0.35, 
6 = 0.40. The  dashed  lines indicate the  phase-plane  defined 
by (10). 

optimum (HASTINGS 1987).  One can easily  derive an ana- 
log of Equation 7, which again is different from the  equa- 
tion that one would derive from the  standard  formula in 
quantitative genetics A f  = G( a In w/d i ) .  In APPENDIX A we 
show that i approaches zero quickly and  that after some 
short time (typically about  ten to fifteen generations)  the 
change in the  components of the genotypic variance on 
the phase plane ( Vg, C,) can be approximated by the 
first order differential equation 

As before the variables Vg and C, must  satisfy the in- 
equality (10).  The  transient dynamics  of the compo- 
nents Vg and C, of the genotypic variance have two quali- 
tatively different regimes. The first one corresponds to 
the evolution towards a polymorphic equilibrium, while 
the second one corresponds to the evolution towards 
one of the two possible monomorphic equilibria. We 
shall consider these regimes separately. On the phase- 
plane ( Vg, C,) with the variables satisfying (10) the poly- 
morphic equilibrium, which  exists and is stable if 2p > 
6 and selection is sufficiently strong relative to recom- 
bination, is given by the  point (1, C3 ,  where C: > 0 solves 
the  numerator of Equation 14. The system  evolves  to- 
ward this state only if initially it belongs to the  domain 
of attraction of this equilibrium. One can show (see AP- 
PENDIX B and Figure 3) that  the  domain of attraction of 
the polymorphic  state is  small.  If the system  initially  be- 
longs  to  this domain (that, as we have argued above,  seems 
to  be  plausible  in  some experimental situations), we expect 
to  observe  only  small  changes  in 5 and C, through time. 

Now let us  assume that  the  parameter values are such 
that  the polymorphic steady state with  positive linkage 
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FIGURE 4 . T h e  time that i t  takes 
change the genic variance V, from 0.95 
0.05 as function of .Band 9 

to 
to 

disequilibrium does  not exist or that  the initial condi- 
tions do  not belong to its domain of attraction. In this 
case the dynamics of the system are similar to those in 
the case of quadratic stabilizing selection: the system 
quickly  evolves to a  line  along which the dynamics are 
slower (see Figure 3 and APPENDIX B). This line is  very 
close to the straight  line C, = 8VK, where as before 8 is 
the  contribution of linkage disequilibrium to the geno- 
typic variance at  an unstable polymorphic equilibrium 
with allele frequencies one half and negative linkage 
disequilibrium. The value -1  5 8 I 0 can be found as 
a solution of a  cubic algebraic equation  defined by the 
numerator of (14) with V, = 1. 

As soon as a trajectory approaches the line C,, = OV,, 
we can assume that C,- - OV,. Approximating the  change 
in the  genic variance in one generation AVR by dVJdT,  
we get a single equation  that describes how V, changes 
with time T: 

A= dV -3V,( l  - V,)(l + Y V g )  

d T  1 - ."V, - f l f l i / 2  (15) 

where.3'= p( l  + O ) , L Z =  (6/4p - 1 ) ( 1  + 8). Note that 
the  denominator in the right-hand side of (15) is the 
mean fitness of the  population evaluated at 5 = 0 and 
C, = OV,. Equation 15 has an integral 

-1  + .w+ . m / 2  
1 + 9  In(1 - V,) + In( V,) 

Y+ 3 / 2  
1 + 9  

- ln(1 + m,) = -.m + c, 
where c is a  constant  that  depends  on  the initial con- 
ditions. If 6 = 4p (which is the case for  quadratic sta- 
bilizingselection),  then g= 0,  and Equations 15 and 16 

reduce to Equations 12 and 13 correspondingly. One 
can use ( 1  6) to find the time that it takes to reach some 
specified level  of the genic variance. Figure 4 illustrates 
the  dependence of the rate of evolution on .Hand %. 
One can see that  the  rate of evolution depends  on %only 
weakly. As before, we can also  use Equations 15 and 16 
for analyzing the dynamics  of C,, G and W. 

Non-equal  contributions of loci; quadratic stabilizing 
selection: In  this section we shall assume that  the con- 
tributions of the loci are different, i.e., that a2 < 1, and 
that  the fitness function is quadratic (4). The equilibria 
in this model were  analyzed in CAWLETS and HASTINGS 
(1993). Both equilibrium and transient behavior in  this 
model are more complicated, but we still can get some 
analytical  results. In APPENDIX A we show that  on  the 
phase-plane (u, v )  the trajectories of the system  quickly 
approach  the line u = -kv, where k is a positive  value 
that  depends  on  the parameters of the model. This im- 
plies that on  the phase-plane ( PI, p2) the trajectories of 
the system  quickly approach  a  straight  line  that passes 
through  the  point (Vi, %). On  the phase-plane (5, V,) 
the trajectories of the system  quickly approach  the curve 

where K, which  is  positive, depends  on k and up. Along 
this curve 

where V,,; = 2afp;q; is the  contribution of the ith locus 
to the genic variance, V,,,, is the maximum  possible 
value of VK,i (at allele frequencies one half ), and  the 
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FIGURE 5.-Exact  trajectories of 
( 2 )  on the  planes ( pl, p, )  and 
( Vg, C,) under  quadratic  stabilizing 
selection  with s = 0.2 and  unequal 
contributions of  the  loci. (A) r = 
0.1, ap = 0.8, so that  the  system 
evolves  to a monomorphic  equilib- 
rium. (B) r = 0.1, ap = 0.4, so that 
the  system  evolves to a singly  poly- 
morphic  equilibrium. (C) r = 0.05, 
ap = 0.4, so that  the system  evolves 
to an  “unsymmetic”  doubly  poly- 
morphic  equilibrium. (D) r = 
0.025, aq = 0.4, so that  the  system 
evolves  to  the  “symmetric”  doubly 
polymorphic  equilibrium  with 
allele  frequencies  one  half. 
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constant  depends on k and a,. One can also derive an 
equation  that describes the dynamics  of Vg,i and C, on 
the phase-plane ( Vg,i, C , ) .  This equation is a special  case 
of the Appel equation. Instead of  trying to analyze it we 
present results of numerical iterations of the full system 
(2) in the form of projections on the phenotypic space 
( p , ,  p,) and ( Vg, C,) . The system has four possible re- 
gimes (GAVRILETS and HASTINGS 1993) that  correspond to 
evolution toward: (a)  one of two monomorphic equi- 

libria, (b)  one of two singly polymorphic equilibria, (c) 
one of two “unsymmetric” doubly polymorphic equilib- 
ria, and  (d) a “symmetric” polymorphic equilibrium 
with allele frequencies one half. As expected, in each of 
these cases on  the ( p , ,  p,) plane we observe (see Figure 
5 )  a quick movement towards a straight line with  slow 
evolution afterwards. The dynamics on  the (Vg, C,) 
plane  are similar: a quick movement towards a straight 
line with  slow evolution afterwards. The coordinates 
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of these straight lines depend  on  the parameters of 
the model; increasing linkage decreases the  rate of 
evolution. 

EXAMPLE 

In this section we consider how the theory developed 
in this paper can be used for analyzing results of artificial 
stabilizing selection experiments. The model we con- 
sidered was a two locus one,  but  it has been  argued  that 
a small number of loci can account  for observable vari- 
ability in some quantitative traits (e.g., LANDE 1988; ORR 
and COYNE 1992).  Numerous  papers with results of  ar- 
tificial  stabilizing selection experiments have been p u b  
lished (e.g., FALCONER  1957; PROUT 1962; GIBSON and 
THODAY 1963; SCHARLOO  1964; SCHARLOO et al. 1967; 
GIBSON and BRADLEY 1974; KAUFMAN et al. 1977;  SOLIMAN 
1982).  In all these experiments  the selection procedure 
used was double  truncation: a small part q (usually  be- 
tween % and %) of individuals with the phenotypes clos- 
est to  the mean were selected. How  is this translated into 
parameters of our model? Let the  phenotype of an in- 
dividual, z ,  be  the sum of the genotypic value, g, and a 
random normally distributed microenvironmental de- 
viation e having the  zero  mean and constant variance E.  
In APPENDIX c we show that  the mean fitness of a genotype 
can be  approximated as 

This approximation is  very good provided selection is at 
least moderately strong (say,  with q < ?4) . Several points 
concerning this approximation should be  mentioned. 
The first is that  the resulting fitness function is Gaussian. 
The second is that  it  does not  depend  on the  proportion 
selected q (as long as q < ?A) and does not make any 
assumption about  the  number of loci. The third  point 
concerns  the  strength of selection. Gaussian fitness func- 
tions are used in quantitative genetic models to describe 
natural stabilizing selection. The resulting mean fitness 
of genotypes in these models is w(g) = exp(-g2/2V), 
with V = V, + E, where V, is a parameter characterizing 
the  strength of selection on phenotypes. It has been ar- 
gued  that  natural selection is  typically  weak with V, = 
20E (TURELLI 1984) so that V = 21E. Expression (18) 
shows that at least in the case  of artificial stabilizing  se- 
lection V - E.  Note also that new data have indicated 
that  natural selection can be as strong as artificial se- 
lec tion ( ENDLER 1986). 

If initially the heritability coefficient h' = ?4, C, = 0,  
and Vg - 1 ( i. e . ,  the maximum possible level), then we 
can take E = 1. In  the model with equal  contributions 
of the loci this gives p = 1 - exp( -?A) - 0.39, 6 = 1 - 
exp( - 2 )  - 0.86. Figure 6 shows  how 8 depends  on  the 
recombination  rate r for these values  of p and 6. We see 
that even for  unlinked loci the linkage disequilibrium 
generated by selection significantly decreases the phe- 

O.O 
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0.0 0.1 0.2 0.3 0.4 0.5 
r 

i 

FIGURE 6.-The value 0 as function of the recombination 
rate r for p = 0.39 and S = 0.86. 

notypic variance. Table 4 shows the time that it takes to 
reduce  the genicvariance from 0.95 to 0.5 and from 0.99 
to 0.5 for some specific r values computed using (16). 
We see that  for  unlinked loci the time to reduce  the 
genic variance is  very short. Finite population size and 
initial deviation of Vg from 1 will reduce it further.  The 
difference between  values in the two last columns of 
Table 4 can be  interpreted as the time interval during 
which there  are no visible changes in the phenotypic 
characteristics. One can see that a decrease in recom- 
bination rate increases this time. LEWONTIN (1964) dis- 
covered this effect in numerical simulations. 

DISCUSSION 

Two important  points have traditionally been ne- 
glected in most theoretical studies of the evolution of 
multilocus systems. The first is the linkage disequilib- 
rium  that is expected  to  be  generated by selection. The 
second is the transient behavior of different character- 
istics  of populations such as genetic variability. In this 
paper we have gained insight into these questions using 
the simple but nevertheless important two locus model 
of  stabilizing selection. The results we  have obtained 
confirm our previous conclusion (GAVRILETS  1993; 
GAWLETS and HASTINGS 1993, 1994a): linkage disequi- 
librium generated by selection can significantly  affect 
qualitative and quantitative characteristics of popula- 
tions provided selection is not extremely weak relative to 
recombination. This is true with respect to both  the 
equilibrium and transient behavior. We have demon- 
strated how the  interaction of selection and recombi- 
nation results in constraints on the mode and rate of 
phenotypic evolution. Surprisingly, the  transient dy- 
namics in the model turns out to be  quite simple. We 
have shown that evolution of the system on the ( Vg, C,) 
phase-plane occurs mainly along a straight line and used 
this property for predicting  the  rate of change of phe- 
notypic characteristics of the population. 
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TABLE 4 

Influence of the  recombination  rate on the dynamics 

r 0 TVc=0.95- VE=05 TVr=0.9% V,=O.5 

0.50 -0.24 0.30 0.65 5 7 
0.10 -0.75 0.10 0.21 23 35 
0.01 -0.97 0.01 0.02 288 448 

Our results demonstrate  that if the loci are moder- 
ately linked, even strong stabilizing selection can require 
more  than a hundred generations  to  change the genic 
variance significantly. This result has important impli- 
cations for selection experiments and for  the mainte- 
nance of genetic variability.  Stabilizing selection experi- 
ments typically do  not last more  than tens of generations 
and employ strong selection. So our results imply that if 
dramatic reductions in variability occur, drift may in fact 
be more important than selection.  When thinking about 
natural systems, it is unreasonable to expect that environ- 
mental conditions and populations remain constant over 
time  scales  of hundreds of generations. Our results  imply 
that over shorter time  scales,  stabilizing  selection will not 
have time to eliminate  variability. Thus, the fact that at 
equilibrium  variability cannot be maintained under stabi- 
lizing  selection may be irrelevant-at  time  scales appropri- 
ate for some natural systems,  variability  is maintained. 

A counter-intuitive conclusion of our analysis is that 
under conditions, which are plausible in artificial sta- 
bilizing selection experiments,  the model can have a 
stable polymorphic equilibrium with positive linkage dis- 
equilibrium. This equilibrium is stable simultaneously 
with monomorphic equilibria. In this case the  outcome 
of the evolution depends on the initial conditions. The 
approach we have developed allows  us to use informa- 
tion about dynamics  of observable characteristics of ge- 
netic systems under selection for testing hypotheses 
about  properties of these systems. To have more prac- 
tical  value this approach  should  be generalized for  the 
case  of more  than two loci and of finite population. Our 
preliminary numerical analyses  have  shown that some of 
the conclusions of this paper  are valid  in these more 
complex situations. 

The main effects described in this paper  are related 
to earlier conclusions of LEWONTIN (1964), BULMER 
(1971, 1974,  1980) and CHEVALET (1988). LEWONTIN 
(1964) numerically simulated stabilizing selection on an 
additive quantitative trait determined by 5 loci. He 
found  that  at first there is a rapid  change  both  in allele 
frequencies (that brings the mean phenotype close to 
the  optimum)  and in linkage disequilibria. After this, 
allele frequencies and linkage disequilibria change 
slowly and this rate of change  reduces with increases in 
linkage (reductions  in  recombination). We have  shown 
how these changes  are related to each other  and to the 
parameters of the model by providing an analytical treat- 
ment of aspects of a two-locus model. BULMER (1971, 

1974) considered a model in which selection does not 
change allele frequencies (due to an assumption about 
an effectively infinite number of loci with  very  small  ef- 
fects). He  found an equation  that described the dynam- 
ics  of the linkage disequilibrium component if the loci 
are  unlinked, and proposed  an approximation that al- 
lowed computation of the equilibrium value  of this com- 
ponent in the case  of linked loci. Our analyses  of dy- 
namics have included  both  the case of linked loci and 
the case  (obviously, more realistic) when allele frequen- 
cies change. Assuming multivariate normality of allele 
effects and  no linkage, CHEVALET (1988) generalized 
Bulmer’s approach in many directions. In particular, he 
took into  account  the  change in allele frequencies un- 
der selection, demonstrated  the separation of times- 
cales, and analyzed the  rate of evolution. Our analysis 
and conclusions are similar but are based on  an exact 
multilocus genetic model and directly incorporate ef- 
fects of linkage. 

The results described in this paper  are also relevant to 
more abstract questions. Our finding  about constancy 
of the ratio CJV, on the trajectories of the system seems 
to be related to the concept of “quasi-linkage equilibrium” 
introduced by KIMURA (1965). In Kimura’s numerical 
simulations a specific function of gamete frequencies 
(namely, Z = xIx4/x2xs) was nearly constant even when 
all gamete frequencies were changing. NAGYLAKI (1976) 
has shown  analytically that this is true  but only if 
selection is  very  weak. Our results and a recent work by 
CHEVALET (1994) suggest that a function of gamete fre- 
quencies might be  found  that will behave as a “constant 
of motion” in more  general situations. Also of some gen- 
eral interest may be  the fact that in some sense the  mode 
and  the  rate of the evolution in the model considered 
are  determined by an unstable equilibrium. 

We  are grateful  to CHUCKCOXWELL  who made  numerical  simulations 
that  inspired  this  work. We thank  SALLY OTTO for helpful comments 
on the  manuscript.  This work  was supported by U.S. Public  Health 
Service  Grant RO1 GM 32130 to A.H. 

LITERATURE  CITED 

BARTON, N. H., and M. TURELLI, 1989 Evolutionary quantitative 
genetics-how little do we know. Annu. Rev. Genet. 23: 

BODMER, W. F., and J. FELSENSTEIN, 1967 Linkage  and selection: theo- 
retical  analysis of the  deterministic two locus random  mating 
model. Genetics 57: 237-265. 

BULMER, M., 1971 The effects of selection on genetic variability. A m .  
Nat. 105: 210-211. 

BULMER, M., 1974 Linkage  disequilibrium  and genetic variability. 
Genet. Res. 23: 281-289. 

BULMER, M., 1980 The  Mathematical Theory of Quantitative  Genet- 
ics. Clarendon  Press, Oxford. 

BURGER, R., 1986 Constraints  for  the evolution of functionally 
coupled characters: a nonlinear analysis of a phenotypic model. 
Evolution 40: 182-193. 

BURGER, R., 1993 Predictions  for  the  dynamics of a polygenic  char- 
acter under directional selection. J. Theor. Biol. 162: 487-513. 

BURGER, R., and M. LYNCH, 1994 Evolution and extinction in a 
changing environment: a quantitative-genetic analyses. Evolu- 
tion (in press). 

337-370. 



Dynamics of Genetic Variability 529 

CHEVALET, C., 1988 Control of genetic  drift in selected  popula- 
tions, pp. 379-394 in Proceedings of the Second International  Con- 
ference on  Quantitative Genetics, edited by B. S. WEIR, E. J. EISEN, 
M. M. GODMAN, and G. NAMKONG. Sinaur Assoc., Sunderland, 
Mass. 

CHEVALET, C., 1994 An approximate  theory of selection assuming 
a finite number of quantitative  trait loci. Genet. Sel. Evol. (in 
press) 

CODDINGTON, E. A,, and N. LEVINSON, 1955 Theory of Ordinary  Dif- 
ferential  Equations. McGraw-Hill,  New  York. 

ENDLER, J. A., 1986 Natural Selection in the Wild. Princeton Uni- 
versity  Press, Princeton, N.J. 

FALCONER, D. S., 1957 Selection for phenotypic intermediates in Dro- 
sophila. J. Genet. 5 5  551-561. 

FELLIMAN, M. W., and U. LIBERMAN, 1979 On the number of stable 
equilibria and the simultaneous stability of fmation and polymor- 
phism in two-locus  models. Genetics 9 2  1355-1360. 

GAVRILETS, S., 1993 Equilibria in an epistatic viability model under 
arbitrary strength of selection. J. Math. Biol. 31: 397-410. 

GAVRILETS, S. ,  and A. HASTINGS, 1993 Maintenance of genetic vari- 
ability under strong stabilizing selection: a two locus model. 
Genetics 134: 377-386. 

GAVRILEE., S. ,  and A. ~ G S ,  1994a Maintenance of  multilocus  vari- 
ability under strong  stabilizing  selection. J. Math.  Biol. 3 2  287-302. 

GAVRILETS, S. ,  and A. HASTINGS, 1994b A quantitative genetic model 
for selection on developmental noise. Evolution (in press). 

GIBSON, J. B., and THODAY, 1963 Effects  of disruptive selection. VIII. 
Imposed quasi-random mating. Heredity 1 8  513-524. 

GIBSON, J. B., and B. P.  BRADLEY, 1974 Stabilizing selection in constant 
and fluctuating environments. Heredity 33: 293-302. 

HASTINGS, A., 1987 Monotonic change of the mean phenotype in 
two-locus models. Genetics 117: 583-585. 

HASTING., A., 1989 Deterministic multilocus population genetics: an 
overview. Lect.  Math.  Life  Sci. 20: 27-54. 

HASTINGS, A., and C. HOM, 1990 Multiple equilibriaand maintenance 

44: 1153-1163. 
of additive genetic variance in a model of pleiotropy. Evolution 

HILL, W. G., and A. CABALLERO, 1992 Artificial selection experiments. 
Annu. Rev. Ecol. Syst. 23: 287-310. 

HOPPENSTUU), F.  C., 1976 A slow selection analysis of two locus, two 
allele traits. Theor. Popul. Biol. 9: 68-81. 

KARLIN, S., and M. FELDMAN, 1970 Linkage and selection: two-locus 
symmetric  viability model. Theor. Popul. Biol. 1: 39-71. 

GUM, P.  F.,  F.  D. ENHELD and R E.  COMSTOCK, 1977 Stabilizing se- 
lection  for pupaweight in Tribolium urrtaneum Genetics 87: 327-341. 

KIMURA, M., 1965 Attainment of quasi linkage equilibrium when 
gene frequencies are changing by natural selection. Genetics 5 2  

KIRKPATRICK, M., and R. U D E ,  1989 The evolution of maternal char- 
acters. Evolution 4 3  485-503. 

U D E ,  R., 1979 Quantitative genetic analysis of multivariate  evolu- 
tion, applied to brain:body  size allometry. Evolution 3 3  402-416. 

U D E ,  R., 1988 Quantitative genetics and evolutionary theory, 
pp. 83-94 in Proceedings of the Second International  Conference 
on  Quantitative  Genetics, edited by  B. S. WEIR,  E. J. EISEN, M.  M. 
GODMAN,  and G. NAMKONC. Sinauer Assoc., Sunderland, Mass. 

LANDE, R., 1991 Isolation by distance in a quantitative trait. Genetics 
128: 443-452. 

LEWONTIN,  R.  C., 1964 The interaction of selection and linkage. 11. 
Optimal model. Genetics 5 0  757-782. 

Genetics 83: 583-600. 

Genetics 85: 347-354. 

Springer, Berlin. 

Springer-Verlag, New  York. 

selection. Genetics 134: 627-647. 

assessment. A m .  Nat. 140: 725-742. 

875-890. 

NAG-, T., 1976 The evolution of one- and  twdocus systems. 

NAG-, T., 1977 The evolution of one- and tw~locus systems. 11. 

NAGW, T., 1978 Selection in  One-  and  Two-Locus  Systems. 

NAG-, T., 1992 Introduction  to  Theoretical  Population  Biology. 

NAG-, T., 1993 The evolution of multilocus systems under weak 

Om, H. A., and J. A. COWE, 1992 The genetics of adaptation-a re- 

PROUT, T., 1962 The effect of stabilizing selection on  the time 

SCHARLOO, W., 1964 The effect of disruptive and stabilizing selection 
on the expression of a cubitus interruptus mutant in drosophila. 
Genetics 5 0  553-562. 

SCHARLOO, W.,  M. S. HOOGMOE~ and A. TER KUIW, 1967 Stabilizing and 
disruptive  selection on a mutant character  in  drosophila. I. The phe- 
notypic  variance and its components.  Genetics 56: 709-726. 

SOUMAN, M. H., 1982 Directional and stabilizing selection for devel- 
opmental time and correlated response in reproductive fitness in 
Tribolium  castaneum. Theor. Appl. Genet. 63: 111-116. 

TURELLI, M., 1984 Heritable genetic variation via mutation-selection 
balance: Lerch’s  zeta meets the abdominal bristle. Theor. Popul. 
Biol. 2 5  138-193. 

TURELLI, M., 1988 Phenotypic evolution, constant covariances, and 
the maintenance of additive  variance.  Evolution 42: 1342-1347. 

TURELLI, M., and N.  BARTON, 1990 Dynamics  of polygenic characters 
under selection. Theor. Popul. Biol. 3 8  1-57. 

USPENSKY, J. V., 1948 Theory of Equations. McGraw-Hill,  New  York. 
WAGNER,  G. P., 1984 Coevolution  of  functionally constrained  characters: 

WOLFRAM, S., 1988 Mathematica: A System for  Doing  Mathematics by 
prerequisites for adaptive  versatility.  BioSystems 17: 51-55. 

Computer. Addison-Wesley,  Reading, Mass. 

Communicating editor: W. J. EWENS 

APPENDIX A 

Exact dynamic equations: If a double heterozygote 
has the  optimum  phenotype, i .  e . ,  z,, = 0, and  the fitness 
function is symmetric, Le. ,  w ( z  - z,,) = w ( z ,  - z) ,  the 
twdocus model of stabilizing selection on an additive 
trait reduces  to  the symmetric  viability model analyzed 
in a number of papers (see BODMER and FELSENSTEIN 
1967; KARLIN and FELDMAN 1970). Table 3 gives the 
fitnesses of different genotypes in this model. Here 

6 = 1 - w( 1 + a2). We shall use the  linear transforma- 
tion ( 5 ) .  Note that - 1 5 u, v, t 5 1 and  that  the new 
variables  satisfy 

ff = 1 - w ( l  - CY2), p = 1 - w ( l ) ,  y = 1 - w ( a , ) ,  

We shall use these inequalities repeatedly. Using  vari- 
ables u, v, t, the dynamics of the system are (KARLIN and 
FELDMAN 1970) : 

1 
u’ = : [A,,(t)u + AI2(t)v], 

W 

+ - ((1 - t ) 2  + 43)  - r ( t  + 3 - u2) , 
ff 

8 1 
where 

6 
8 8 

w = 1 - - ((1 + t )2  + 4u2) - - ff ((1 - t ) 2  + 4 3 )  

(A24 
- - P (1 - t2 + 4uv) - - Y (1 - t 2  - 42474, 

4 4 
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equilibrium values  of t (with u = v = 0 )  

6 
A,,(t)  = 1 - - (1  + t) - ( P  + Y)(l  - 4 1 - t 2  

2 4 f ( t )  = ~p ( t  - 
(A24 

4P 

(Y - P>(1 + 4 
A d t )  = 

shows that if 6 < 2P, then  there exists T, > 0 such that 
for 0 < T < r, this cubic has two solutions, say t ,  and 4 , 

a ( P  + Y)(l  + 0 t2 ( t ,  < t2 )  between t* and 1, and has no solutions if 6 > 
2P. Note that if T = 0, than t, = t*. The consideration of 

(A2f) the equation for t' - t shows that t, is unstable, while 6 is 
4 2 ( t )  = 1 - - (1 - t) - 

(Y - P)(1 - 4 stable. The critical  value  r,  can be found as follows.  At T = 
A21(t) = 4 r, the algebraic equationsf( t )  = 0 and g( t )  = df(  t ) / d t  = 

2 4 

One can use equations (A2) together with (6) to get 
dynamic equations in terms of the phenotypic charac- 
teristics f ,  Vg and C,. 

Equal contributions of the loci: If the  contributions 
of the loci are  equal,  then a = 0,  /3 = 7, and  the dynamics 
of the system  simplify to 

((1 + t )2  + 4u2) - 

where 

and 

P 
2 

A,(t) = 1 - - (1 + t).  (A30 

HASTINGS (1987) showed that 0 < A,( t )  < rlr. That means 
that u monotonically approaches zero and,  hence,  at 
equilibrium u = 0. The consideration of the difference 
A,, - w with u = 0 shows that 

One can see that if 6 2 2P, then A ,  2 W for all -1 5 
t 5 1. Together with the fact that A,  > 0 that means that 
if 6 2 2/3, then I v' I > I u I ,  and,  hence, v + T1. At 
an equilibrium with I v I = 1, t = - 1. Obviously, these 
equilibria correspond to fixation of gamete Ab or aB. If 
6 < 2P, then  there exists t* = 6/(4P - 6) > 0 such that 
I d  > IvI, if t<t*,and I v r I  < IvI,ift>t*.Theformer 
case corresponds to the convergence of the  population 
to one of  two monomorphic equilibria. The latter case 
corresponds to a polymorphic equilibrium with v = 0 
that exists and is stable provided t stays in the  area where 
t > t*. The consideration of the cubic equation for 

0 have a common root. This is  possible if the resultant 
R( f ,  g) of the polynomialsf and  gis zero (USPENSKY 1948). 
Hence, to find r, we need to solve the algebraic equation 
R( f ,  g)  = 0, which  is  cubic  in our case.  Result 1 in the main 
body of this report summarizes our findings. 

We have already proved that u approaches zero while 
I u I tends  to one  or zero depending  on  the  parameter 
values and the initial conditions. Now  we are going to 
show that u reaches its equilibrium value much quicker 
than u. Equations A3a and A3b can be represented as 

is to unity, the slower the  corresponding variables 
evolves.  If both A,( t )  , A,,( t )  < W, i. e . ,  if the system  evolves 
to a polymorphic equilibrium with u = u = 0,  t = t2,  then 
Equations A3e and A3f show that A,( t )  < A,( t ) .  Hence, 
A, < A,,, u / u  + 0, and u reaches zero much quicker then 
u. If A,,( t )  > W, i . e . ,  if the system  evolves to a  monomor- 
phic equilibrium with u = 0,  I v I = 1, t = - 1, then using 
the first  of the inequalities in (Al)  one can show that 

u' = A,u, ur = A,v where Ai = A,/w > 0. The closer Ai 

~3 - A,(t) 2 - (6 + t(6 - 2P)) (A6a) 
1 - t  

4 
and 

l + t  
4 A,(t) - W 5 - (6 + t(6 - 2P)). (A6b) 

As the system  evolves, I v I increases, and  not later than 
when I v I = %, the t value becomes negative (see Al). 
Inequalities (A6)  show that  for negative t ,  A, lies farther 
from unity than A,,, and, hence again u reaches its equi- 
librium value much quicker then v. Note that (A6)  to- 
gether with (Al) can be used to  show that I u r  - u I > 
I v r  - v I for all t values. Thus, we have  shown that u 
reaches its equilibrium value much faster than u. 

Non-equal  contributions of the loci: In this subsec- 
tion we consider the model of quadratic stabilizing  se- 
lection with unequal  contributions of the loci. We are 
going  to show that in this case the dynamics on  the 
( u ,  v )  phase-plane are  characterized by quick move- 
ment to  a  straight  line  along which the dynamics are 
slower. The dynamics on  the ( u ,  u) phase-plane are 
described by 

(:)' = (:), 
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A, = 1 - - (3 + 3 4  + 4 q t -  <@, (A*b) 
S 

4 

with h, > A , ,  while the corresponding eigenvectors are 

(1 - a;)(l + t )  
vec, = 

(1 - a;)(l + t) 
vec, = 

-4%-t-a;t-<Q I}* (A9b) 

where Q= 1 + 14a; + a: + 8%t + 8a:t + 4ai&‘. Figure 
7 shows that the eigenvector vec, that corresponds to the 
biggest  eigenvalue  practically does not depend on t, and 
hence is practically constant during the evolution.  Let us 
introduce the new variables (x, y): 

(;) = U(y”)’ 

where  matrix U is constructed from the column  vectors 
(0 , l )  and vec,. The dynamics  of (x, y) are described by 

(y”)’ = b-lA(t)UC).  W 

Matrix U’A(t)Uis a lower  triangular  matrix  with  diagonal 
elements A, and h, and a positive nondiagonal element. 
Since 4 > A, > 0 for all t, the first component ofvector (x, y) 
quickly approaches zero.  In  terms  of the original  variables 
u and u this corresponds to  quick  movement of the system 
to the straight line represented by the second  eigenvector. 

FIGURE 7 . T h e  first component  ofvector 
vec2 as function of  t and a2. 

APPENDIX B 

Approximate dynamics of (9): Equation 9 can be re- 
written as dC,/dV, = P( C,, V , ) / Q (  C,, v,) with the ob- 
vious interpretation. Simple methods for analyzing 
the phase portraits of such equations are well  known 
(e.g., CODDINGTON and LEVINSON 1955). The phase-plane 
of (9) is restricted by (10). The nullclines of VK are 
(i) V, = 1 and (ii) C, = - V,; the only nullcline of C, 
that belongs to the feasible art of the phase-plane is 
(iii) C, = r / s  - + r/s)‘ + V i  (the nullcline C,. = r / s  + 
v ( r / #  + V;5 is not a part of the feasible area because 
on this nullcline C, > V,). Equation 9 has two equilibria 
at intersections of the nullclines: (0,O) and (1, e), where 
8 is  given by (1 1).  The equilibrium point (0,O) is a stable 
node;  the  corresponding eigenvalues are equal to -s 
and -r. This equilibrium of (9) corresponds to two 
monomorphic equilibria of (2) with fixation of gamete 
A b  or aB. The latter are identical in phenotypic terms. 
The equilibrium (1, 6) is a saddle; the  corresponding 
eigenvalues are A, = s + r - d m  > 0 with the 
eigenvector (- 1 - r/s ,  1)  and A, = - < 0 with 
the eigenvector (0, 1). This equilibrium of (9) corre- 
sponds to the unstable equilibrium of (2) with  allele 
frequencies equal to one half and linkage disequilib- 
rium D = 8/4. The nullcline V, = 1 is a stable manifold 
for the equilibrium (1,e) : the system  evolves to this equi- 
librium if initially V, = 1. In the  neighborhood of  an 
equilibrium the dynamics are  determined by the corre- 
sponding eigenvalues and eigenvectors. Let us consider 
the ratio of the absolute values  of the eigenvalues at 
(l,O).Onecaneasilyseethat IA,I/lA,I =2181(1 + 
0) / (1  + 82). The latter value  is  always  less then 0.42. That 
shows that at a neighborhood of (1.6)  the dynamics  of 
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(9)  are characterized by two different time  scales  with a 
quick movement towards the unstable manifold (rep- 
resented locally by the eigenvector ( -  1 - r / s ,  1)) and 
a slow movement along this manifold. We are going to 
show that  the same description of the dynamics is  valid 
not only at a neighborhood of (1, 8) but  on  the whole 
phase-space, i .e. ,  globally. Let  us  consider  the value of 
dC, /dV,  on  the  straight  line  that  connects  the equi- 
libria ( 0 ,   0 )  and (1, 8). Using the  fact that 8 satisfies 
the  equation 78 + s( 1 - 02)/2 = 0, one can show that 
dC,/dV,I c, = = (8  - 1) /2  and,  hence, 

U V  K I cl=ev, 

This means that  the trajectories of (9) intersect the 
line C, = OV, from below. We can already see that all the 
trajectories of (9) enter  a narrow area restricted by this 
line and  the nullcline (iii) of C,. We can narrow this area 
further. Let us consider the value  of dCI/dV,  on the 
straight line C,, = 8Vg + E that is parallel with C, = OV, 
and lies a little higher  then  the  latter. We are going to 
show that if E is greater  then some small number,  then 

This means that  the trajectories of (9) intersect the 
line C, = OV, + E from above. One can show that  the 
latter inequality is equivalent to 

- E 2 8  - (1 + 8')E - 8(l + 8)'V,(1 - V , )  < 0. (B2b) 

In particular (B2b) is  always satisfied for E 2 0.035. 
Inequalities (Bl-B2a) mean that trajectories of (9)  enter 
a narrow area between lines C, = 8Vg and C, = OVg + 
E (  V,, e), where E (  V,, 8) < 0.035. Numerical iterations 
show that all the trajectories of (9) approach  the line 
C, = 8Vg very  closely (see Figure 1). 

Approximate  dynamics of (14): Let us  assume that 
the polymorphic equilibrium (1, C 2  exists. One can 
easily  see that  the trajectories of (14) intersect the line 
C, = 4p/  (3p - (6 - p ) )  - Vg from above. This line is 
one of the  three nullclines of V,; on it the term in the 
squared brackets in (14) is zero. Thus, if  initially C, 5 
4/3/ (3p - (6 - p) ) - V,, then  the system cannot evolve 
towards this state. This shows that  the  domain of attrac- 
tion of the polymorphic state is small (see Figure 3). 

Now let us  assume that  the system  evolves  toward one 
of the two monomorphic equilibria (with gamete Ab or 
UB fixed).  In phenotypic terms these equilibria are 
equivalent and  are  represented by the  point (0 ,O)  on 
the phase-plane ( V,, C,). This point describes the stable 
equilibrium of (14). Besides, (14) has an  (unstable) 
equilibrium (1, e), where 8 < 0,  at  the intersection of the 
nullcline V, = 1 of Vg with the nullcline of C, that is 
defined by the  numerator of the right-hand part of (14). 
The equilibrium (1, 8) is approached only if VK = 1 ini- 
tially. The third nullcline of V, is  given by V' + CIA = 0. 
Let  us consider the direction of the trajectories of (14) 

on the line that connects (0 ,O) with (1, 8). If 6 > 2/3, then 
inequality (Bl)  is still  valid. If 6 5 2p, then  the derivative 
dC,/dV, can change sign on the straight line C, = 8VK. 
However, one can  still  show that the trajectories of (14) 
enter  a narrow area R restricted by two straight  lines  par- 
allel  with C' = 8% one of which  lies higher and another 
lower then C, = 8%. Let  us  consider the difference 

Putting the terms  in  this  difference  over a common de- 
nominator (which is positive), one can  see that the nu- 
merator can be represented as Num = f l (8, x, E )  + 
df,( 8, x, E ) ,  where d = (S/4p) - 1 2 -% and fi are poly- 
nomials  in 8, x and E .  The consideration of the graph of 
f2( 8, x, E )  using Muthemuticu software (WOLFRAM 1988) 
shows thatf, < 0 at E = -0.03 for  all  feasible 8 and x. That 
means that Num reaches its maximum at d = -X. The 
consideration of the graph of  Num at d = -% and E = 

-0.03 shows that it is negative for all  feasible 8 and x. Al- 
together this  means that the trajectories of (14) intersect 
the line C ,  = 05 - 0.03 from below. In a similar way the 
consideration of the graph of f,(8, x, E )  shows that f2 > 0 
at E = 0.10. That means that Num  reaches its minimum at 
d = -%. The consideration of the graph of  Num at d = 
-% and E = 0.10  shows that it is  positive for all  feasible 8 
and x. Altogether  this  means that the trajectories of (14) 
intersect the line C, = 8% + 0.10 from  above. Thus, we 
have  shown that all the trajectories of (14) enter  a narrow 
area restricted by  two straight C ,  = 8% - 0.03 and CI, = 
8% + 0.10. Numerical iterations show that all the trajec- 
tories of (14) approach the line C,. = 8% very  closely. 

APPENDIX C 
The  mean  fitness of  genotype  under  double  trunca- 

tion: Let the phenotype of an individual, z, be  the sum 
of the genotypic value, g, and  a  random normally  dis- 
tributed microenvironmental deviation e having mean 
zero and  constant variance E.  Let the mean value  of the 
trait be zero, and select for the  next  generation  the in- 
dividuals with -zq < z < zq, where zq is the truncation 
point that corresponds to the  proportion q selected. In 
this case the mean fitness of an individual with geno 
value gis u(g )  = ~ ( z ,  - g)/@ - ~ ( ( - 2 ~  - g)/ YC ~3, 
where @(x)  is the distribution function of a  standard 
normal variable. In a vicinity of 0 (say for ?4 < @(x) < X), 
@(x)  is excellently approximated by a  linear  function. 
This, together with the assumption that  the phenotypic 
distribution is normal, allows  us to approximate zq as 
q m P ,  where P is the phenotypic variance. Now 
zq/<E = qdrr/2(1 - h)z,  where h' = G / P  is the 
heritability. Assuming that zJ<E < 1 (which is true, 
for example, for q < M and h' < %) and  expanding 
@( ( z q  - g)/<@ and @( ( -zq - g)/<@ in  Taylor series 
at  the  point - g/<E, we finally find that  the mean 
fitness of genotype can be approximated as (18). The 
error of this approximation is q(zq/<h3). 


