Supplementary Information for "Rapid evolution of reproductive barriers driven by sexual conflict" by S. Gavrilets.

PART 2.

Derivation of equations 9 from equations 7

Let $p(z)$ be the distribution of a quantitative trait z in the population with the mean \bar{z} and central moments $M_{i}\left(=\int(z-\bar{z})^{i} p(z) d z\right)$. Let the fitness function be represented as a polynomial in $z-\bar{z}$

$$
w(z)=a_{0}+\sum_{i=1}^{k} a_{i}(z-\bar{z})^{i}
$$

where coefficients a_{i} are allowed to depend on the moments of $p(z)$ but not on z. Taking the mathematical expectation of both sides of the last equation one finds that the mean fitness \bar{w} can be represented as

$$
\bar{w}=a_{0}+\sum_{i=2}^{k} a_{i} M_{i} .
$$

Accordingly, the numerator in equation 7 a is

$$
\begin{aligned}
I_{1} & =\int z w(z) p(z) d z \\
& =\int(z-\bar{z}+\bar{z}) w(z) p(z) d z \\
& =\int(z-\bar{z})\left[a_{0}+\sum_{i=1}^{k} a_{i}(z-\bar{z})^{i}\right] p(z) d z+\bar{z} \int w(z) p(z) d z \\
& =\sum_{i=1}^{k} a_{i} \int(z-\bar{z})^{i+1} p(z) d z+\bar{z} \bar{w} \\
& =\sum_{i=1}^{k} a_{i} M_{i+1}+\bar{z} \bar{w} .
\end{aligned}
$$

Plugging the above expressions for \bar{w} and I_{1} into equation (7a) one finds that the within generation change in \bar{z} is

$$
\begin{aligned}
\Delta \bar{z} & =\bar{z}^{\prime}-\bar{z} \\
& =\frac{I_{1}}{\bar{w}}-\bar{z}
\end{aligned}
$$

$$
=\frac{\sum_{i=1}^{k} a_{i} M_{i+1}}{a_{0}+\sum_{i=2}^{k} a_{i} M_{i}},
$$

which is equation (9a).
In a similar way, the numerator in equation 7 b is

$$
\begin{aligned}
I_{2} & =\int z^{2} w(z) p(z) d z \\
& =\int(z-\bar{z}+\bar{z})^{2} w(z) p(z) d z \\
& =\int\left[(z-\bar{z})^{2}+2(z-\bar{z}) \bar{z}+\bar{z}^{2}\right] w(z) p(z) d z \\
& =\int(z-\bar{z})^{2}\left[a_{0}+\sum_{i=1}^{k} a_{i}(z-\bar{z})^{i}\right] p(z) d z+2 \bar{z} \int(z-\bar{z}) w(z) p(z) d z+\bar{z}^{2} \int w(z) p(z) d z \\
& =a_{0} M_{2}+\sum_{i=1}^{k} a_{i} M_{i+2}+2 \bar{z}\left(I_{1}-\bar{z} \bar{w}\right)+\bar{z}^{2} \bar{w} \\
& =\sum_{i=0}^{k} a_{i} M_{i+2}+2 \bar{z} \sum_{i=1}^{k} a_{i} M_{i+1}+\bar{z}^{2} \bar{w} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\Delta M_{2} & =M_{2}^{\prime}-M_{2} \\
& =\frac{I_{2}}{\bar{w}}-\left(\bar{z}^{\prime}\right)^{2}-M_{2} \\
& =\frac{\sum_{i=0}^{k} a_{i} M_{i+2}+2 \bar{z} \sum_{i=1}^{k} a_{i} M_{i+1}}{\bar{w}}+\bar{z}^{2}-(\bar{z}+\Delta \bar{z})^{2}-M_{2} \\
& =\frac{a_{0} M_{2}+\sum_{i=1}^{k} a_{i} M_{i+2}-M_{2} \bar{w}}{\bar{w}}+2 \bar{z} \frac{\sum_{i=1}^{k} a_{i} M_{i+1}}{\bar{w}}-2 \bar{z} \Delta \bar{z}-(\Delta \bar{z})^{2} \\
& =\frac{a_{0} M_{2}+\sum_{i=1}^{k} a_{i} M_{i+2}-M_{2}\left(a_{0}+\sum_{i=1}^{k} a_{i} M_{i}\right)}{\bar{w}}-(\Delta \bar{z})^{2} \\
& =\frac{\sum_{i=1}^{k} a_{i}\left(M_{i+2}-M_{2} M_{i}\right)}{\bar{w}}-(\Delta \bar{z})^{2},
\end{aligned}
$$

which is equation (9b).

Analysis of equations 2 and 10

Taking the difference of equations (2a) and (2b) one finds that

$$
\begin{aligned}
\Delta(\bar{x}-\bar{y}) & =\alpha(\bar{x}-\bar{y})\left[2 V_{x} \frac{s}{\theta}\left(1-\alpha \frac{(\bar{x}-\bar{y})^{2}}{\theta}\right)-V_{y}\right] \\
& \left.=\alpha(\bar{x}-\bar{y}) 2 V_{x} \frac{s}{\theta}\left[1-\frac{1}{2} \frac{V_{y}}{V_{x}} \frac{\theta}{s}-\alpha \frac{(\bar{x}-\bar{y})^{2}}{\theta}\right)\right] .
\end{aligned}
$$

If condition 3 is satisfied, the expression in the square brackets is always negative and $u \equiv \bar{x}-\bar{y} \rightarrow 0$ asymptotically. If condition 3 is not satisfied, $u \rightarrow \pm \delta$ where δ is found from the quadratic equation obtained by equating the expression in the square brackets to zero.

At a mutation selection balance,

$$
\Delta V_{x}=0, \Delta V_{y}=0
$$

From the second equation one finds the equilibrium value of V_{y} given by (6a). The equilibrium value of V_{x} is found using the fact that the expression in the square brackets above is zero:

$$
\begin{aligned}
0 & =2 \alpha V_{x}^{2} \frac{s}{\theta}\left(1-3 \frac{\alpha(\bar{y}-\bar{x})^{2}}{\theta}\right)+\mu_{x} \\
& =2 \alpha V_{x}^{2} \frac{s}{\theta}\left(1-3\left(1-\frac{1}{2} \frac{V_{y}}{V_{x}} \frac{\theta}{s}\right)\right)+\mu_{x} \\
& =-4 \alpha \frac{s}{\theta}\left(V_{x}^{2}-\frac{3}{4} \frac{\theta}{s} V_{y}-\frac{1}{4} \frac{\theta}{s} \frac{\mu_{x}}{\alpha}\right)
\end{aligned}
$$

The last equation has the only positive solution given by (6b). From (6b) it follows that at mutation-selection balance equilibrium

$$
\frac{1}{2} \frac{V_{y}}{V_{x}} \frac{\theta}{s}=\frac{4}{3\left(1+\sqrt{1+\frac{16 m_{x}}{9 \mu_{y}} \frac{s}{\theta}}\right)},
$$

which is always $<2 / 3$. Thus, condition (3) is never satisfied.

