
Jan. 6, 1999 Page 1

Evolution and speciation in a hyperspace: the roles of
neutrality, selection, mutation and random drift

Sergey Gavrilets
Department of Ecology and Evolutionary Biology

and Department of Mathematics, University of Tennessee,
Knoxville, TN 37996-1610, USA

Contents

Abstract 2

The problem of speciation 2

Rugged adaptive landscapes 3

Nearly neutral networks and holey adaptive landscapes 6
The origin of the idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Simple models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Russian roulette model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Uniformly rugged landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Multiplicative fitnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Stabilizing selection on an additive trait . . . . . . . . . . . . . . . . . . . . . . . . 10
NK model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Conclusions from models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Experimental evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
A metaphor of holey adaptive landscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Applications 12
Genetic divergence and molecular evolution . . . . . . . . . . . . . . . . . . . . . . . . . 13
Speciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Hybrid zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
RNA and proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Gene and genome duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Canalization of development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Morphological macroevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Conclusion 17

Acknowledgments 17

References 17



Jan. 6, 1999 Page 2

Abstract

The world as we perceive it is three dimensional. Physicists currently believe one needs on the order
of a dozen dimensions to explain physical world. However, biological evolution occurs in a space
with millions dimensions. Sewall Wright’s powerful metaphor of rugged adaptive landscapes with
its emphasis on adaptive peaks and valleys is based on analogies coming from our three-dimensional
experience. Because the properties of multidimensional adaptive landscapes are very different from
those of low dimension, for many biological questions Wright’s metaphor is not useful or is even
misleading. A new unifying framework that provides a plausible multidimensional alternative to
the conventional view of rugged adaptive landscapes is emerging for deepening our understanding of
evolution and speciation. The focus of this framework are percolating (nearly) neutral networks of
well-fit genotypes which appear to be a common feature of genotype spaces of high dimensionality.
A variety of important evolutionary questions have been approached using the new framework.

The problem of speciation

Between 1.4 and 1.8 million species have been described124. Current estimates are on the order of
10 million species with some estimates going as high as 100 million species36,60,84. There are 950,000
insect species of which 350,000 are beetles, 230,000 species of flowering plants, 69,000 fungal species,
25,000 bony fishes, 13,000 species of nematodes, 9,000 species of birds, about 4,200 mammal species,
1,814 species of rodents, 986 species of bats, hundreds of endemic species of Hawaiian Drosophila,
300 cichlid species in the Lake Victoria and 250 species of gammarids in Lake Baikal35,129,151. It has
been argued that the living species represent less than 1% of the number of extinct species110. This
gives the “average rate of speciation” on the order of 3 new species per year123. [It is interesting that
this number is very close to the rate of 1 new species per year estimated by Lyell (1832; cited in Ref.
16).] Of course any “average” rates of speciation are somewhat misleading for speciation takes place
simultaneously in many different geographic locations and its rates vary between different groups
of organisms. Table 1 shows rates of genus origination (number of originations/standing diversity
per 1 million years [My]) in marine animals in the fossil record for three major faunas123. As a
rule of thumb, species origination rates are one order of magnitude higher than the corresponding
genus origination rate. Thus, for example, an “average” species of Paleozoic crinoids produced a
new species in 1 My with a probability of 60%.

The maximum speciation rates known are much higher. These are the rates of speciation in
lakes and on islands. The following are some examples compiled by McCune90. The Hawaiian
Islands have existed for about 5.6 My. During this time a large number of endemic species have
originated there: 250 species of crickets, 860 species of drosophilids, 47 species of honeycreepers,
100 species of spiders and 40 species of plant bugs. Fourteen endemic species of finches are known
on Galapagos Islands, which have existed for 5-9 My. Other examples are for fishes in lakes. Six
species of semionotids originated in Lake P4, Newark Basin, in 5,000-8,000 years, five species of
cyprinodontids in Lake Chichancanab in 8,000 years, twenty two species of cyprinodontids in Lake
Titicaca in 20,000-150,000 years. Speciation of cichlids in Great African Lakes has been extremely
rapid: 5 species in Lake Nabugabo in 4,000 years, 400 species in Lake Malawi in .7-2.0 My, dozens
of species in Lake Tanganyika in 1.2-12 My, 11 species in Lake Borombi Mbo in 1.0-1.1 My, and
arguably the most spectacular speciation event known - speciation of 300 cichlid species in Lake
Victoria in 12,000 years.
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Table 1: Rates of genus origination (number of originations/standing diversity per 1 My) in marine
animals in the fossil record (after Ref. 123).

Fauna Taxonomic Rate
class of origination

Cambrian Trilobites 0.13
“Monoplacophorans” 0.12
Hyoliths 0.07
“Inarticulates” 0.06

Paleozoic Cephalopods 0.11
Articulates 0.06
Crinoids 0.06
Corals 0.05
Ostracodes 0.04
Stenolaemates 0.03

Modern Echinoids 0.03
Crustaceans 0.03
Foraminfera 0.03
Gastropods 0.03
Bivalves 0.03

Speciation is a universal biological phenomenon that can be very rapid. Speciation has tra-
ditionally been considered to be one of the most important and intriguing processes of evolution.
[Recall that Darwin’s book32 title begins with ”The origin of species ...”] In spite of this consensus
and significant advances in both experimental and theoretical studies of evolution, understanding
speciation still remains a major challenge27,30,62,89,126,127. The main reason for this situation is the
ineffectiveness of direct experimental approaches because of the time scale involved. Experimental
work necessarily concentrates on distinct parts of the process of speciation intensifying and simpli-
fying the factors under study116,128. In situations where direct experimental studies are difficult or
impossible, mathematical modeling has proved to be indispensable for providing a unifying frame-
work. Although numerous attempts to model parts of the process of speciation have been made,
a quantitative theory of the dynamics of speciation is still missing. Currently, verbal theories of
speciation are far more advanced than mathematical foundations.

Rugged adaptive landscapes

Speciation is an extremely complex process influenced by a large number of genetical, ecological,
environmental, developmental and other factors. When one is trying to understand a very complex
phenomenon, it is very helpful to have a simple model of this phenomenon. A minimal model for
discussing evolution and speciation considers an organism as a sequence of genes that has some
probability to survive to the age of reproduction. An individual’s genes and the probability of
survival are referred to as its genotype and fitness, respectively. The set of all possible genotypes
is referred to as genotype space. [Wright referred to the “field of possible gene combinations”.]
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Genotype space can be mathematically represented by the vertices of a (generalized) hypercube or
an undirected graph51,111,112. It is useful to visualize each individual as a point in this genotype
space. Accordingly, a population will be a cloud of points, and different populations (or species)
will be represented by different clouds. Selection, mutation, recombination, random drift and other
factors change the size, location and structure of these clouds.

The relationship between genotype and fitness is one of the most important factors in deter-
mining the evolutionary dynamics of populations. This relationship can be visualized using the
metaphor of the adaptive landscape147. In what follows an adaptive landscape represents fitness as
a function defined on the genotype space. To construct an adaptive landscape one assigns “fitness”
to each genotype (or each pair of genotypes) in genotype space. Different forms of selection and
reproductive isolation can be treated within this conceptual framework. For example, fitness can be
a genotype’s viability (in the case of viability selection); it can be fertility or the probability of suc-
cessful mating between a pair of genotypes (in the case of fertility selection or premating isolation,
respectively). Following Wright, adaptive landscapes are usually imagined as “rugged” surfaces
having many local “adaptive peaks” of different height separated by “adaptive valleys” of different
depth. Adaptive peaks are interpreted as different (potential) species, adaptive valleys between
them are interpreted as unfit hybrids8; adaptive evolution is considered as local “hill climbing”72,
and speciation is imagined as a “peak shift”147.

However, there are problems with this description and several of its implicit assumptions can be
questioned. For instance, do different species really have different fitnesses (cf. Ref. 70) ? Are small
differences in fitness important in speciation? [Note that Wright himself believed that “the principal
evolutionary mechanism in the origin of species must ... be an essentially nonadaptive one”, p.364
in Ref.147.] Are local peaks attainable given mutation and recombination, which destroy “good”
combinations of genes, and finite population size, which results in the confinement of the population
to an infinitesimal portion of the genotype space? Does formation of a new species always imply a
(temporary) reduction in fitness? It does not seem that there are compelling reasons for positive
answers to these questions. Finally there is a fundamental problem, realized already by Wright
himself: how can a population evolve from one local peak to another across an adaptive valley
when selection opposes any changes away from the current adaptive peak?

A possibility of escaping a local peak that has received most attention is provided by stochastic
fluctuations in the genetic composition of the population (random genetic drift). Random genetic
drift is always present if the population size is finite. The following two examples illustrate the
difficulties of stochastic transitions in bistable systems arising in modeling evolution on a rugged
landscape.

Fixation of an underdominant mutation. Let us consider a finite population of diploid organisms
where a single diallelic locus controls fitness (viability). Let N be the population size and wAA =
1, wAa = 1−s, waa = 1 be the fitnesses of genotypes AA, Aa and aa, respectively (with s > 0). An
adaptive landscape corresponding to this model has two “peaks” represented by the homozygous
genotypes AA and aa which are separated by a “valley” represented by the heterozygous genotype
Aa. Assume that initially all N organisms are homozygotes AA and consider the fate of a single
allele a introduced in the population by mutation. If the new allele is neutral, that is if s = 0,
the probability of its eventual fixation is 1/(2N) (Ref. 73). Lande75 has shown that if s > 0, the
probability that allele a will be fixed in the population (and, thus, the population will shift to a
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new peak) is approximately

U =
e−Ns

√
4Ns/π

erf(
√
Ns)

times smaller than the probability of fixation of a neutral allele. Here erf(x) is the error function.
Some numerical examples: if Ns = 5 then U ∼ 0.017, if Ns = 10 then U ∼ 10−4 and if Ns = 20
then U ∼ 10−8. This shows that if the population is at least moderately large (N > 200) and
the adaptive valley is at least moderately deep (s > 0.1), the probability of a stochastic transition
across the valley is extremely small.

Shift between stable phenotypic states. In the model considered above there is a single major locus
controlling fitness. However, the majority of traits affecting fitness are controlled by many loci with
small effects. Such traits can be modeled using the standard framework of quantitative genetics.
Let us consider a finite population of diploid organisms where a single additive quantitative trait z
controls fitness. Assume that the distribution of the trait in the population is normal with a constant
variance G. Let the fitness function w(z) has two “peaks” at z = a and z = b with a “valley” between
them at x = ν. [For example, one can chose w(z) = exp(−(z − a)2/V ) + exp(−(z − b)2/V )with a
sufficiently small V ]. Assuming that initially the population is at one peak, the expected time until
the peak shift is approximately

T =
2π

G
(−cacν)−1/2

[
w(a)

w(ν)

]2N

where w(x) and cx are the average fitness of the population and the curvature of the fitness function
at z = x and N is the population size10,77. Some numerical examples77: if the initial adaptive peak
is 1.05 times higher than the valley (that is w(a)/w(ν) = 1.05), then using realistic values of other
parameters if N = 100 then T ∼ 106 whereas if N = 200 then T ∼ 1010 − 1011.

These two examples show that although stochastic transitions across very shallow valleys may
sometimes occur, it is highly improbable that they can be a major mechanism of genetic divergence
of populations on a large scale. This is especially so if the population size is larger than a few
hundred individuals and if the valley is sufficiently deep (that is if the stochastic transitions are to
result in significant reproductive isolation). Natural populations are usually much larger than few
hundred individuals and reproductive isolation even between closely related species is strong.

Shifting-balance theory. To solve the problem of stochastic transitions between different adaptive
peaks Wright146,148 proposed a shifting-balance theory. He considered populations to be subdivided
into a large number of small subpopulations connected by migration. Because local subpopulations
are small and there are many of them, there is a non-negligible probability of a stochastic peak
shift in at least some of them. Wright reasoned that having been established in a subpopulation,
a new adaptive combination of genes can take over the whole system as a result of differential
migration. Wright’s argument was mainly verbal. Recent formal analyses of different versions of
the shifting-balance theory11,17,42,75,76 have lead to the conclusion that although the mechanisms
underlying this theory can, in principle, work, the conditions are rather strict. The main problem
is the third phase of the shifting-balance process - the spread of the new combination of genes from
a local subpopulation to the whole system31,42,59.

Founder effect speciation. Another possibility to escape a local adaptive peak is provided by
founder effect speciation23,87,88,125. In this scenario, a few individuals found a new population that is
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geographically isolated from the ancestral species and that expands a new area. Here, a stochastic
transition to a new peak happens during a short time interval when the size of the expanding
population is still small. An advantageous feature of the founder effect speciation scenario relative to
the shifting balance process is that the new combination of genes does not have to compete with old
combinations of genes which outnumbers it. The proponents of this scenario proposed only verbal
schemes without trying to formalize them. Later, formal analyses of founder effect speciation on
rugged adaptive landscapes using analytical models and numerical simulation have however shown
that stochastic transitions between peaks after a founder event cannot result in a sufficiently high
degree of reproductive isolation with a sufficiently high probability to be a reasonable explanation
for speciation8,10,26.

It appears that the apparently crucial question about the mechanism of stochastic transitions
between different adaptive peaks cannot be answered. Something should to be wrong. At this
moment it is good to look back and ask ourselves why we ask this question at the first place. The
question about peak shifts appears to be a very natural one to ask within the realm of Wright’s
metaphor of rugged adaptive landscapes. However, one has to realize that the metaphors and
simple models we use do not only help to answer questions we have but also define the questions
that we believe should be asked. Perhaps something is wrong with this metaphor? Even at a close
inspection, the metaphor of rugged adaptive landscapes seems very appropriate. Indeed, if we look
around what we see are landscapes with elevations (peaks) and depressions (valleys) and there is no
way one can get from one peak to another without first descending to some kind of valley between
the peaks. But are analogies coming from our three-dimensional experience any good for biological
evolution?

Table 2: Gene number (after Ref.19)

Prokaryotes 1,000-8,000
Eukaryotes (except 7,000-15,000

vertebrates)
Vertebrates 50,000-100,000

Nearly neutral networks and holey adaptive landscapes

The dimensionality of sequence space can be defined as the number of new sequences one can
get from a sequence by changing single elements of the sequence. Even the simplest organisms
known have on the order of thousand genes (see Table 2) and on the order of million DNA base
pairs. Each of the genes can be at at least several different states (known as alleles). Thus, the
dimensionality of genotype space is at least on the order of thousands. It is on the order of millions
if one considers DNA base pairs instead of genes. This results in an astronomically large number
of possible genotypes (or DNA sequences) which is much higher than the number of organisms
present at any given time or even cumulatively since the origin of life. On the other hand, the
number of different fitness values is limited. For example, if the smallest fitness difference one can
measure (or that is important biologically) is, say, 0.001, then only 1000 different fitness classes
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are possible. Even if one wants to create an adaptive landscape for a set of binary sequences in a
computer memory using double precision, then the assignment of different numerical fitness values
to different sequences is only possible for sequences with the length L < 64.

There is an important consequence of this observation. Because of the redundancy in the
genotype-fitness map, different genotypes are bound to have very similar (identical from any prac-
tical point of view) fitnesses. Unless there is a strongly ”non-random” assignment of fitnesses (say
all well-fit genotypes are put together in a single “corner” of the genotype space), a possibility
exists that well-fit genotypes might form connected clusters (or networks) that might extend to
some degree throughout the genotype space. If this were so, populations might evolve along these
clusters by single substitutions and diverge genetically without going through any adaptive valleys.

Another consequence of the extremely high dimensionality of the genotype space is the increased
importance of chance and contingency in evolutionary dynamics. Because a) mutation is random
(which gene will be altered to which allele is unpredictable), b) each specific mutation has a very
small probability, and c) the number of genes subject to mutation is very large, the genotypes present
will be significantly affected by the random order in which mutations occur. Thus, mutational order
represents a major source of stochasticity in evolution in the genotype hyperspace82,91,92. One should
expect that even with identical initial conditions and environmental factors different populations
will diverge genetically.

The origin of the idea

These ideas are well-established, having been discussed in the literature many times. In particular,
Dobzhansky34 pointed out that if there are multiple genes producing isolation, then reproductive
isolation between two species evolving from a common ancestor can arise as a by-product of fixing
”complementary” genes, none of which has to be deleterious individually. To illustrate this he
proposed a simple verbal model of a two-locus two-allele system in which well-fit genotypes formed
a chain connecting two reproductively isolated genotypes. Dobzhansky noted that “this scheme may
appear fanciful, but it is worth considering further since it is supported by some-well established
facts and contradicted by none” (p.282). Similar schemes were discussed by Bateson (1909, cited
in Ref.106), Muller (1942), Maynard Smith (1983), Nei (1976), Barton and Charlesworth (1984).
Kondrashov and Mina74 expressed this idea in terms of a “complex system of ridges in a genotype
space” and illustrated it graphically (their Figure 2). The discussions of all these authors were
restricted to the statement that if a specific kind of genetic architecture exists, then the problem of
crossing adaptive valleys is solved. Maynard Smith85 made one step further by concluding that this
kind of architecture must be present: “It follows that if evolution by natural selection is to occur,
functional proteins must form a continuous network which can be traversed by unit mutational
steps without passing through nonfunctional intermediates” (p. 564).

Recently Maynard Smith’s conjecture was put on firmer theoretical grounds. On the one hand,
extensive “continuous networks” were discovered in numerical studies of RNA fitness landscapes38,57,58,68,122

and also for protein fitness landscapes3. On the other hand, in analytical studies of different general
classes of adaptive landscapes the existence of connected networks of well-fit genotypes has been
shown to be inevitable under fairly general conditions51,111,112,113.

A few words about the terminology. In what follows a neutral network is a contiguous set of
sequences possessing the same fitness. This definition is in accord with that used in Ref.5,68,97 and is
synonymous with “continuous network” used in Ref.85, “networks of neutral paths” used in Ref.122,
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“neutral nets” used in Ref.66 and with “connected components” used in Ref.51. This definition
appears to be preferential to the broader definition of a neutral network that did not assume the
connectivity (e.g. Ref.112,114,121) and, thus, is somewhat confusing for the word “network” does
imply the connectivity. A nearly neutral network is a contiguous set of sequences possessing
approximately the same fitness. A holey adaptive landscape is an adaptive landscape where
relatively infrequent well-fit (or as Wright put it, “harmonious”) genotypes form a contiguous set
that expands (“percolates”) throughout the genotype space51. [An appropriate three-dimensional
image of such an adaptive landscape is a flat surface with many holes representing genotypes that
do not belong to the percolating set.]

Simple models

In this section I illustrate the origin of connected networks of well-fit genotypes in some simple
models.

Russian roulette model

Let us assume that an individual’s genotype can be completely specified by a binary sequence of
length L. [Using the population genetics terminology we consider haploid individuals different with
respect to L diallelic loci.] In this case the genotype space is equivalent to a binary hypercube. Let
us consider a family of adaptive landscapes arising if genotype fitnesses are generated randomly
and independently and are only equal to 1 (viable genotype) or zero (inviable genotype) with
probabilities p and 1 − p, respectively. [Here, one might think of the set of all possible genotypes
playing one round of Russian roulette with p being the probability to get a blank.] The probability
p can be interpreted as the probability to get a viable genotype after combining genes randomly.
Thus, from biological considerations p is supposed to be rather small (definitely much smaller than
that one in the non-genetic version of the Russian roulette). On the other hand, the number of
loci, L, is very large. A counter-intuitive feature of this model is that viable genotypes form neutral
networks in the genotype space such that members of a neutral network can be connected by a chain
of viable single-gene substitutions. Properties of these networks can be identified using methods
from percolation theory and random graphs theory4,51,111,112. In general, there are two qualitatively
different regimes: sub-critical, which takes place when p < pc, and super-critical, which takes
place when p > pc, where the critical values pc, which is known as the percolation threshold, is
approximately 1/L. At the boundary of these two regimes, all properties of adaptive landscapes
undergo dramatic changes, a physical analogy of which is a phase transition. In the sub-critical
regime there are many small networks, whereas in the super-critical regime there is a single “giant
component” that includes a significant part of all viable genotypes and “percolates” through the
whole genotype space. The adaptive landscape corresponding to the super-critical regime is “holey.”
Biologically that means that there is a possibility for substantial evolution by fixing single mutations
without crossing any adaptive valleys. In the sub-critical regime, typical members of a network can
be connected by a single sequence of viable genotypes. Thus, there is a single possible “evolutionary
path.” In contrast, in the super-critical regime, typical members of the percolating neutral network
can be connected by many different evolutionary paths. It is very easy to see why the percolation
threshold pc in this model should be approximately equal to 1/L. Indeed, if the number of loci L
is very large and p > 1/L, then each viable genotype will have at least several viable neighbors
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(that is genotypes different in a single gene) and the network of viable genotypes will “percolate.”
The percolation threshold decreases if there are more than two alleles. With k alleles at each locus,
Pc ≈ 1/(L(k−1)). If one allows for mutational events affecting more than one gene simultaneously,
the percolation threshold decreases dramatically. For example, if a genotype cluster is defined as
a set of genotypes that can be connected by a chain of viable single- or two-gene substitutions,
the percolation threshold becomes equal to pc = 2/L2. In general, in high-dimensional genotype
spaces (that is when L ∗ (k − 1) is large), even very small values of p will result in the existence of
a percolating neutral network.

Different properties of a diploid version of this model are discussed in Ref.51. Note that instead
of assigning fitnesses 0 and 1, one can assign fitnesses 1 and σ > 1. In this case, the sequences with
superior fitness σ will form a percolating neutral network if p > 1/L. Reidys et al.114 studied the
error threshold for a molecular quasispecies evolving on a holey adaptive landscape arising in this
model.

Uniformly rugged landscape

The assumption that fitness can only take two values might be viewed as a serious limitation. Here, I
consider the same genotype space as in the previous section, but now I assume that genotype fitness,
w, is a realization of a random variable having uniform distribution between 0 and 1 (Ref.51). The
adaptive landscape arising in this model will be called a “uniformly rugged landscape.” Let us
introduce two threshold values, w1 and w2 such that w2 − w1 = p > 0, and let us say that a
genotype belongs to a (w1, w2)-fitness band if its fitness w satisfies to w1 < w ≤ w2. According to
the results from the previous section if p > 1/L, there is a percolating nearly neutral network of
genotypes in a (w1, w2)-fitness band. The members of this network can be connected by a chain
of single-gene substitutions resulting in genotypes that also belong to the network. If one chooses
w2 = 1 and w1 = 1− p, it follows that uniformly rugged landscapes have very high “ridges” (with
genotype fitnesses between 1 − p and 1) that continuously extend throughout the genotype space.
In a similar way, if one chooses w2 = p and w1 = 0, it follows that uniformly rugged landscapes
have very deep “gorges” (with genotype fitnesses between 0 and p) that also continuously extend
throughout the genotype space. If p is small, the fitnesses of the genotypes in the (w1, w2)-fitness
band will be very similar. Thus, with large L extensive evolutionary changes can occur in a nearly-
neutral fashion via single substitutions along the corresponding nearly-neutral network of genotype
belonging to a percolating cluster. The maximum number of the non-overlapping (w1, w2)-fitness
bands is 1/p, which with p just above the percolation threshold is about L. Thus, the maximum
number of percolating near-neutral networks of genotypes is L. In this model, there is a percolating
network of well-fit genotypes and, thus, the corresponding adaptive landscape is holey.

Multiplicative fitnesses

In a commonly used multiplicative fitness model alternative alleles are interpreted as “advantageous”
and “disadvantageous” and the fitness of an individual with k disadvantageous alleles is chosen to
be (1−s)k with s > 0. Here, the fitness landscape has a single peak and L+1 different fitness values.
Any two genotypes from at the same fitness level can be connected by a chain of single substitutions
leading not farther than the previous or the next fitness level. Thus, the number of distinct nearly-
neutral networks in this model is approximately L/2. These networks can be imagined as spherical
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shells in genotype space at a constant mean Hamming distance from the optimum genotype. In
contrast to the previous model, in the multiplicative fitness model different networks have different
sizes with the diameter of the network (the maximum Hamming distance between its members)
decreasing from L for genotypes with an equal number of advantageous and disadvantageous alleles
to 0 for the most fit genotypes. Woodcock and Higgs145 have studied this model in detail and shown
that a finite population subject to mutation reaches a state of stochastic equilibrium staying close
to the fitness level corresponding to U/s disadvantageous alleles. Here U is the rate of mutation per
sequence. The whole of the population is clustered together in a particular region of genotype space
wandering randomly through the corresponding nearly-neutral network. Gavrilets and Gravner51

have considered a diploid version of this model in that each genotype is assigned fitness 1 with
probability proportional to p = (1− s)k where k is the number of heterozygous loci.

Stabilizing selection on an additive trait

A common model in evolutionary quantitative genetics is that of stabilizing selection on a trait z
determined by the sum of effects of L diallelic loci, z =

∑
αili where αi is the contribution of the

i-th gene to the trait and li = 0 or 1 for i = 1, . . . , L. The term “stabilizing selection” means that
individual fitness w(z) decreases with the deviation of the trait value from some optimum value θ.
Assuming for simplicity that αi = 1 for all i and that optimum θ is at the mid value of the trait
range (θ = L/2) results in a single-peak fitness landscape with L/2 different fitness values. As in
the multiplicative fitness model, any two genotypes at the same fitness level can be connected by a
chain of single substitutions leading not farther than the previous or the next fitness level. Thus,
the number of distinct nearly-neutral networks in this model is approximately L/4. In contrast to
the multiplicative model where the most fit nearly-neutral network has the smallest diameter, in the
present model this network percolates (and has the largest diameter L) and, thus, the corresponding
adaptive landscape is holey. This means that extensive nearly-neutral divergence is possible under
stabilizing selection. Barton9 and Mani and Clarke82 studied the divergence in this model in detail.

NK model

Stabilizing (or any other nonlinear) selection on an additive trait z results in epistatic interactions
between effects of different loci on fitness. The order of these interactions depends on the degree of
non-linearity of the fitness function w(x) but each locus epistatically interacts with all other L− 1
loci. For example, under quadratic stabilizing selection (that is with w(z) = 1 − sz2), there are
pairwise additive-by-additive epistatic interactions in fitness between all L(L− 1)/2 pairs of loci50.

A structurally different class of epistatic model is a family of the so-called NK-models71 where
each locus interacts only with a specified number K of other loci in such a way that interactions
of all possible orders (from the second through the K-th order) are present. The existence of
neutral and nearly-neutral networks percolating through the genotype space in the NK-models was
demonstrated and considered in detail5,97. Barnett5 and Ohta103,104 have numerically studied the
patterns of population evolution in these models.

Conclusions from models

The existence of chains of well-fit genotypes that connect reproductively isolated genotypes was
postulated by Dobzhansky and other earlier workers. In contrast, the models just described show
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it to be inevitable under broad conditions. The existence of percolating nearly-neutral networks
of well-fit genotypes which allow for “nearly-neutral” divergence appears to be a general property
of adaptive landscapes with a very large number of dimensions. Do existing experimental data
substantiate this theoretical claim?

Experimental evidence

Although none of the examples listed below can be viewed as an irrefutable evidence by itself, viewed
as a whole these examples provide “substantial and credible evidence” that the genetic architecture
leading to the extended nearly-neutral networks of well-fit genotypes is widespread.

i) The most straightforward approach is to analyze the relationships between genotype and
fitness143. Results of many studies of epistatic interactions in plants, Drosophila, mammals and
moths105,138,150 imply the existence of chains of well-fit genotypes connecting genotypes that are
reproductively isolated to some degree.

ii) “Ring species” can probably be considered as one of the best manifestations of holey adaptive
landscapes. A ring species is a chain of “races” (or subspecies) with gradual transitions and no
reproductive isolation between adjacent geographic races but abrupt changes and reproductive
isolation where the terminal races come into contact. Nine cases of ring species were described in
Ref.87 and more than a dozen additional cases were documented in Ref.88. In ring species, chains
of genotypes connecting reproductively isolated forms are recreated in a natural way.

iii) Strong artificial selection in a specific direction usually results in the desired response, but
as a consequence of the genetic changes brought about by selection different components of fitness
(such as viability or fertility) significantly decrease65. Moreover, after relaxing selection, natural
selection usually tends to return the population to its original state. These observations stimulated
Wright’s view of species as occupying isolated “peaks” in an adaptive landscape109. However, the
size of the experimental populations under selection is usually very small - on the order of few dozen
individuals. Small populations will be characterized by low levels of genetic variation and may not
“find” ridges in the adaptive landscape even if they were present. Weber142 performed selection
experiments using very large populations of Drosophila melanogaster with thousands individuals
selecting for the ability to fly in a wind tunnel. Weber was able to change the selected trait (which
is obviously non-neutral) by many standard deviation but did not observe any significant reduction
in fitness components nor any tendencies to return to the original state after selection was relaxed.
A straightforward interpretation of Weber’s results is that the large population was able to find a
ridge of well-fit genotypes in the adaptive landscape.

iv) Extensive natural hybridization in animals and plants2,21,117 represents something that is
very difficult to reconcile with isolated peaks but is well expected if there are ridges in the genotype
space.

v) The existence of fit intermediates between radically different morphologies has been observed
in the fossil record24.

vi) The analyses of RNA sequences and secondary structures have provided abundant evidence
for the existence of neutral networks38−40,57,58,66−68,111,112,120−122.

v) Empirical evidence for extensive functional neutrality in protein space is presented by Mar-
tinez with co-workers83.

vi) Some additional evidence coming from the properties of hybrid zones and patterns of molec-
ular evolution will be considered below.
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A metaphor of holey adaptive landscapes

Wright’s metaphor of rugged adaptive landscapes puts special emphasis on adaptive peaks and
valleys. This metaphor is very useful for thinking about adaptation and optimization. However, its
utility for understanding perpetual genetic divergence and speciation is questionable. Overstating
to make the point, peaks are largely irrelevant because populations are never able to climb there
(cf. Ref.103), and valleys are largely irrelevant because selection quickly moves populations away
from there. A finite population subject to mutation is likely to stay mostly within a fitness band
determined by the balance of mutation, selection and random drift. Under very general conditions,
genotypes with fitnesses within this band form a connected network. Better understanding of the
processes of genetic divergence and speciation can be achieved by focusing on these nearly-neutral
networks of well-fit genotypes, which are expected to extend throughout genotype space under fairly
general conditions. A simplified view of adaptive landscapes that puts special emphasis on these
networks is provided by the metaphor of holey adaptive landscapes43,51. This metaphor disregards
fitness differences between different genotypes belonging to the network of well-fit genotypes and
treats all other genotypes as “holes”. The justification for the latter is a belief that selection and
recombination will be effective in moving the population away from these areas of genotype space
on a time scale that is much faster than the time scale for speciation. Accordingly, microevolution
and local adaptation can be viewed as the climbing of the population from a “hole” towards the
holey adaptive landscape, whereas macroevolution can be viewed as a movement of the population
along the holey landscape with speciation taking place when the diverging populations come to be
on opposite sides of a “hole” in the adaptive landscape. In this scenario, there is no need to cross
any “adaptive valleys”; reproductive isolation between populations evolves as an inevitable side
effect of accumulating different mutations. As Charlesworth25 put it, “the loss in fitness to species
hybrids is no more surprising than the fact that a carburetor from a car manufactured in the USA
does not function in an engine made in Japan” (p. 103).

Applications

Simple model and metaphors train our intuition about complex phenomena, provide a framework
for studying such phenomena and help identify key components in complex systems. Next I briefly
review some important biological problems and processes that have been (or can be) studied using
approaches focusing on (nearly) neutral networks and holey adaptive landscapes.

Genetic divergence and molecular evolution

One of the consequences of the existence of the percolating nearly-neutral networks of well-fit geno-
types is the expectation that biological populations will evolve (and diverge) staying mainly within
these networks. The metaphor of “holey” adaptive landscapes neglects the fitness differences be-
tween genotypes in the network but these differences are supposed to exist and should be apparent
on a finer scale. If one applies a finer resolution, the movement along the network will be accom-
panied by slight changes in fitness. Evolution will proceed by fixation of weakly selected alleles
which can be advantageous, deleterious, over- and underdominant, or apparently neutral depending
on the specific area of genotype space the population passes through. Smaller populations will
pass faster through the areas of genotype space corresponding to fixation of slightly deleterious
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mutations whereas larger populations will pass faster through the areas corresponding to fixation of
(compensatory) slightly advantageous mutations. These patterns of molecular evolution and genetic
divergence, as expected from the general properties of multidimensional adaptive landscapes, are
similar to the patterns revealed by the methods of experimental molecular biology80, which form
the empirical basis for the nearly neutral theory of molecular evolution (Ref.99,102; see Ref.55 for
an alternative interpretation of the data).

Speciation

A classical view of speciation is that reproductive isolation arises as a by-product of genetic
divergence34,147. Models incorporating holey adaptive landscapes provide a way to evaluate whether
the mechanisms implied by this view may result in (rapid) speciation and to train out intuition
about the speciation process.

Nei95, Wills144 and Bengtsson and Christiansen15 initiated formal analyses of the Dobzhansky
model. Nei and co-authors96 studied one- and two-locus multi-allele models with step-wise mu-
tations and considered both postmating and premating reproductive isolation. Genotypes were
reproductively isolated if they were different by more than 1 or 2 mutational steps. In their model,
speciation was very slow. They conjectured, however, that increasing the number of loci may signif-
icantly increase the rate of speciation. Wagner and co-authors138 considered a two-locus, two-allele
model of stabilizing selection acting on an epistatic character. For a specific set of parameters,
the interaction of epistasis in the trait and stabilizing selection on the trait resulted in a fitness
“ridge”. The existence of this ridge simplified stochastic transitions between alternative equilibria.
Gavrilets and Hastings53 formulated a series of two- and three-locus Dobzhansky-type viability se-
lection models as well as models for selection on polygenic characters. They studied these models
in the context of founder effect speciation and noticed that the existence of ridges in the adap-
tive landscape made stochastic divergence much more plausible. In these models, the resulting
reproductive isolation can be very high and can evolve with a high probability on the time scale of
dozens or hundreds of generations. For appropriate parameter values, Gavrilets and Hastings results
have demonstrated that founder effect speciation is plausible. Similar conclusions were reached by
Gavrilets and Boake48 who studied the effects of premating reproductive isolation on the plausi-
bility of founder effect speciation. The adaptive landscape considered by Gavrilets and Boake was
defined for pairs of genotypes. They have demonstrated that after a founder event a new adaptive
combination of genes may rise to high frequencies in the presence of an old combination of genes
that is sympatrically (cf. Ref.149).

The models just discussed were formulated for a small number of loci (or quantitative traits).
Higgs and Derrida63,64 proposed a model with an infinitely large number of unlinked and highly mu-
table loci. In their model the probability of mating between two haploid individuals is a decreasing
function of the proportion of loci at which they are different. Here, any two sufficiently different
genotypes can be visualized as sitting on opposite sides of a hole in a holey adaptive landscape
which is defined for pairs of individuals. Higgs and Derrida as well as Manzo and Peliti81 studied
this model numerically assuming that mating is preferential. In their models populations undergo
a continuous process of splitting into reproductively isolated groups with subsequent extinction
and/or hybridization and loss of reproductive isolation. Models where the probability of mating
between a pair of haploid individuals are mathematically equivalent to models where fitness (viabil-
ity) of a diploid individual depends on its heterozygosity (that is the number of heterozygous loci).
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Orr105,107 studied possibilities for allopatric speciation in a series of such models for the diploid
case. Gavrilets with co-workers54 have performed individual-based simulations to evaluate whether
rapid parapatric speciation is possible if the only sources of genetic divergence are mutation and
random genetic drift. Distinctive features of their simulations are the consideration of the complete
process of speciation (from initiation until completion), and of a large number of loci, which was
only one order of magnitude smaller than that of bacteria. To reflect the idea that reproductive
isolation arises simultaneously with genetic divergence, it was posited that an encounter of two
haploid individuals can result in mating and viable and fecund offspring only if the individuals are
different in no more than K loci (cf., Ref.63,64). Otherwise the individuals do not mate (premating
reproductive isolation) or their offspring is inviable or sterile (postmating reproductive isolation).
In contrast to Higgs and Derrida approach, the encounters of individuals were random and muta-
tion rates were more realistic (much lower). As a consequence, speciation was irreversible. These
numerical results demonstrated that rapid speciation on the time scale of hundreds of generations
is plausible without the need for extreme founder events or complete geographic isolation. Selection
for local adaptation is not necessary for speciation (cf., Ref.115, 118). The plausibility of speciation
is enhanced by population subdivision. Simultaneous emergence of more than two new species from
a subdivided population is highly probable. Gavrilets47 developed some analytical approximations
for the dynamics observed in the numerical simulations.

Adaptation

Extended (nearly) neutral networks are important in adaptation for they can be “used” by a popu-
lation to find areas in genotype space with higher fitness values121. Numerical and analytical results
for RNA fitness landscapes39,40,66,68, for a single peak fitness landscape arising in the “Royal Road”
genetic algorithm130,131,132,133, and for multipeak fitness landscapes of the NK model97 show that
evolutionary dynamics of adaptation proceed in a step-like fashion where short periods of jumps to
a higher fitness level are interrupted by extended periods during which populations diffuse along
neutral networks. Similar behavior has been observed in experiments79 with bacteria populations
adapting to a new environment. Thus, understanding evolution along nearly-neutral networks (and
on holey adaptive landscapes) may increase our understanding of local adaptation and microevolu-
tion.

Hybrid zones

Hybrid zone is a geographic region where genetically distinct populations meet and interbreed to
some extent, resulting in some individuals of mixed ancestry. Analysis of hybrid zones provides
insights into the nature of species, the strength and mode of natural selection, the genetic architec-
ture of species differences, and the dynamics of the speciation process11,12,61. Many hybrid zones
exhibit a gradual change (“cline”) in a character or in allele frequency along a geographic transect.
Theoretical studies of hybrid zones concentrate on the form of clines and the ability of genes to
penetrate hybrid zones6,14,45,49.

Many hybrid zones are thought to be formed following a secondary contact of different pop-
ulations, and to be maintained by a balance between selection against hybrids and recombinant
phenotypes and dispersal12. Gavrilets44 used the Dobzhansky model to contrast the properties of
hybrid zones formed when adaptive peaks are isolated with those formed when adaptive peaks are
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connected by a chain of well-fit intermediates. A major difference between the two types of hybrid
zones should be in the distribution and fitnesses of genotypes in the center of the hybrid zone. If
adaptive peaks are isolated, in the center of the hybrid zones besides the high-fitness parental forms
one should observe mainly low-fitness hybrids. Moreover, one expects concordant clines in neutral
allele frequencies7,98. With strong Dobzhansky-type epistatic selection, and low rates of migration
reproductive isolation between allopatric populations on opposite sides of the hybrid zone will in-
crease with distance between these populations. F1 hybrids between individuals from allopatric
populations on opposite sides of the hybrid zone will have low fitness. These F1 hybrids will have
genotypes that differ from hybrid genotypes common in the center of the hybrid zone, which will
have high fitness. In general, clines in the frequencies of neutral marker alleles linked to selected
loci will be disjoint and unsymmetric. Concordant clines are expected for neutral alleles unlinked
to selected loci.

Hybrid zones with apparently discordant clines and apparently well-fitted recombinant geno-
types present are known for house mouse, grasshopper, common shrew, burney moth and field
vole18,61,69,98,134. A grasshopper hybrid zone studied by Virdee and Hewitt134 is especially inter-
esting in this regard. Here crosses between the two pure taxa (Chorthippus parallelus parallelus
and Chorthippus parallelus erythropus) result in sterile male offspring whereas no such dysfunction
has been detected in hybrid males collected through the center of the hybrid zone. Crosses have
revealed noncoincident clines for dysfunction near the center of the hybrid zone.

RNA and proteins

For RNA sequences neutral networks are defined as contiguous sets of sequences that fold into the
same secondary structure. Different biological implications of the existence of neutral networks in
both RNA sequence space and protein space are explored in much detail elsewhere38−40,57,58,66−68,83,111,112,120−122.

Gene and genome duplication

Conrad29 puts forward an idea of an “extra-dimensional bypass” on adaptive landscapes. According
to Conrad an increase in the dimensionality of an adaptive landscape is expected to transform
isolated peaks into saddle points that can be easily escaped resulting in continuing evolution. A
straightforward mechanism for increasing the dimensionality of the adaptive landscape is an increase
in the size of genome by gene or genome duplication. Similar ideas are discussed by Gordon56.
The results on the existence of percolating nearly-neutral networks of well-fit genotypes reviewed
above provide a formal justification of the idea of an “extra-dimensional bypass” (see Ref.51). In
general, the percolation threshold decreases with increasing the dimensionality of genotype space
which to a large degree is controlled by the genome size. Increasing the latter by gene or genome
duplication100,101,141 should result in increasing the connectivity of the networks of well-fit genotypes
which in turn will increase the possibilities for evolutionary change. Interestingly, it has already
been argued that Cambrian explosion was a result of an increase in the gene number94. Increasing
the genome size increases the redundancy in proteins and DNA28,137 which may facilitate evolution
and result in increased canalization of development.
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Canalization of development

There is a general belief that biological systems ought to evolve to a state of greater stability119,135,140.
One usually distinguishes between genetic canalization (insensitivity to mutations) and environmen-
tal canalization (insensitivity to environmental variation). Evolution of environmental canalization
has been considered elsewhere52,140. The metaphor of holey adaptive landscapes is useful for think-
ing about the evolution of genetic canalization. From general considerations, one should not expect
complete symmetry of “real” adaptive landscapes which are supposed to have areas varying with
respect to the width and concentration of ridges of well-fit genotypes. Numerical simulations show
that populations tend to spend more time in areas of high concentration of well-fit genotypes37,67,108.
One of the biological manifestations of this effect will be apparent reduction in the probability of
harmful mutations, that is, evolution of genetic canalization136. Another manifestation will be a
change in the ability of random genetic variation to produce phenotypic changes, that is, evolution
of evolvability1,139. There is a controversy regarding effects of recombination and sex on the ability
of populations to find areas of high concentration of well-fit genotypes. Peliti and Bastolla108 and
Finjord37 results suggest that only sexual populations tend to find these areas and hang there. On
the other hand, Huynen and Hogeweg67 observed the same effect in modeling asexual populations.

Morphological macroevolution

So far the discussion has been limited to genotype space where individuals were represented as
sequences of genes or DNA and RNA base pairs. However, the results on the existence of nearly-
neutral networks and holey adaptive landscapes should be valid for any sequence space of high
dimensionality. In particular, instead of sequences of genes one can consider sequences of discrete
morphological characters and study morphological evolution.

Empirical studies of long-term morphological evolution are typically based on a large number
of discrete characters. A common null model in interpreting patterns of morphological changes
observed in the fossil record is random diffusion in morphospace20. An implicit assumption of
this model is that all possible directions for evolution are equally probable. In terms of adaptive
landscapes, this corresponds to a flat landscape of neutral evolution33,73. In general, because of
genetic, developmental, or ecological constraints some of the possible character combinations can
be prohibited. In this case, the morphospace will be mathematically equivalent to a hypercube with
“holes” (with “holes” representing prohibited character combinations) and the corresponding adap-
tive landscape will be “holey” rather than “flat”. If the proportion of holes is not extremely high,
“harmonious” character combinations will form a nearly-neutral network extending throughout the
whole morphospace. A characteristic signature of a random walk on a holey hypercube appears to
be a stretched exponential dependence of the overlap between the current and initial positions of
the walker on time (e.g. Ref.22,78). Gavrilets46 has developed a model describing the dynamics
of clade diversification on a morphological hypercube and applied this model to Foote’s data41 on
the diversification of blastozoans. The fitting of the stretched exponential curve to blastozoan data
has led to inconclusive results: although the fit is good, it is not better than the fit of a simple
exponential curve expected for flat landscapes. More detailed data sets and theoretical results on
random walks on hypercubes with holes are needed for more precise conclusions.
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Conclusion

Although most attempts to use the approaches discussed here are relatively recent, the list of
applications is already impressive. Still we have only started and this list will definitely grow in
the nearest future. Among applications that appear to be especially important are adaptations of
the approach for the case of continuous (morphological) hyperspace, incorporation of changes in
the adaptive landscapes brought about by biotic and abiotic factors, development of a dynamical
theory of random walks on neutral networks, analyses of cluster formation in hyper-spaces with
emphasis on the origin of hierarchies, and bridging results on the dynamics on neutral networks
with the methods for reconstructing phylogenies.

Currently, the mathematics of high-dimensional spaces is very abstract and lacks any real appli-
cations. Genotype space arising in evolutionary biology is an example of a hyperspace that is both
real and very important. The discovery of complex behaviors of simple ecological models a quarter
of a century ago has stimulated the impressive development of the theory of low-dimensional dy-
namical systems. One can hope that recent advances in evolutionary biology reviewed here will have
a similar effect on the development of mathematical theories of the structure of and the dynamics
in hyperspace.
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