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We consider mathematical models describing the evolutionary consequences of antagonistic
interactions between male offence, male defence and female reproductive tract and physiology in
controlling female mating rate. Overall, the models support previous verbal arguments about the
possibility of continuous coevolutionary chase between the sexes driven by two-way (e.g. between
male offence and female traits) and three-way (e.g. between male offence, male defence and female
traits) inter-sexual antagonistic interactions. At the same time, the models clarify these arguments by
identifying various additional potential evolutionary dynamics and important parameters (e.g.
genetic variances, female optimum mating rates, strength of selection in females and the relative
contributions of first and second males into offspring) and emphasizing the importance of initial
conditions. Models also show that sexual conflict can result in the evolution of monandry in an
initially polyandrous species and in the evolution of random mating in a population initially
exhibiting non-random mating.
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1. INTRODUCTION
The available data are still fragmentary but they are

consistent with the hypothesis that there is a three-way

tug-of-war between [male] offence, [male] defence, the

female reproductive tract and physiology. This three-

way conflict generates many opportunities for both

two-way and three-way interlocus antagonistic

coevolution.

(Rice 1998, p. 264; see also Rice & Holland 1997;

Holland & Rice 1998)
A graphical illustration of this three-way tug-of-war

is given in figure 1. An example used by Rice to

introduce this hypothesis considers a female that mates

with two males. The traits of the first male (e.g. the

properties of his seminal fluids) are selected for

‘defence’, that is, the capacity to reduce remating in

the female and, if it fails, to prevent his sperm from

being displaced by the second male. The traits of the

second male are selected for ‘offence’, that is, the ability

to persuade the female to remate with him and then to

displace the sperm of the first male. From the female’s

perspective, there can be some benefits of remating,

such as additional nutrients (if a nuptial gift is

provided), the insurance against infertility or low

sperm levels of some males, help in caring for offspring,

the ability to gain resources without male harassment,

etc. (Arnqvist & Nilsson 2000; Jennions & Petrie

2000). However, at some level of remating its costs

will probably outweigh its benefits. Therefore, the
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optimum remating probability for females is likely to be
intermediate between 0 and 1.

Recent work stimulated by a surge of interest in
sexual conflict and its evolutionary consequences
(reviewed in Stockley 1997; Chapman et al. 2003;
Pizzari & Snook 2003; Arnqvist & Rowe 2005; see also
other articles in this issue and in the special issues of
American Naturalist (Hosken & Snook 2005) and
Evolutionary Ecology (Härdling & Smith 2005)) has
largely supported Rice’s hypothesis. The existence of
different two- and three-way intra- and inter-sexual
conflicts is well appreciated by now. The purpose of this
paper is to explore potential evolutionary consequences
of these conflicts using a series of simple, yet general,
mathematical models. A major reason for using
mathematical models is the complexity of predicted
evolutionary outcomes which results in the limitations
of biological intuition and reasoning based on gener-
alization from data to identify most important and
plausible patterns of evolutionary change and factors
driving it. The models to be studied here are intended
to help train our intuition. The hope is that once one
has relatively clear ideas about expected dynamics, one
can come up with some falsifiable hypotheses and
better theoretical guidance for empirical work.
2. GENERAL MODELLING FRAMEWORK
Here, we will consider conflict over mating rate. Let
f(x) be the distribution of a female trait x (‘resistance’ to
the male strategy) and g( y, z) be the distribution of a
pair of male traits y and z (‘stimulus to mate’ and
‘remating suppression’, respectively). The traits are
assumed to be controlled by different loci. For
definiteness, we will assume that x, y and z can take
q 2006 The Royal Society
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Figure 1. A three-way tug-of-war (after Rice 1998).
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Figure 2. A two-way tug-of-war between male offence and
female reproductive tract and physiology.
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any value between KN and N. Let �x, �y and �z be the
corresponding mean values and Gx, Gy and Gz the
corresponding additive genetic variances.

In models, two functions will control the between-
sexes interactions. The first function, which we denote
as j(x, y), is the probability that a virgin female x
accepts male y (0%j%1). This function is analogous
to the so-called ‘preference function’ common in
models of sexual selection (e.g. Lande 1981; Sved
1981a,b; Gavrilets 2004). The second function, which
we denote as f(x, y, z), is the probability that a female x
that has already mated with a male with remating
suppression trait z mates again with a male with
stimulus trait y (0%f%1). Between-sexes interactions
will translate into fitness components: wf and wm for
female and male fitness, respectively. Sexual conflict
will be incorporated into the model by assuming that
female fitness wf is maximized at a mating rate Popt the
value of which is different from the mating rate
optimum for males.

In analysing the models, we will use a quantitative
genetics approach (e.g. Lande 1976, 1979; Iwasa et al.
1991; Abrams et al. 1993; Gavrilets 1997). This
approach represents a valuable alternative to the
game-theory approaches (e.g. Parker 1979; Parker &
Partridge 1998; Härdling et al. 1999, 2001; Smith &
Härdling 2000; Ball & Parker 2003; Lessells 2005) and
standard population genetic approaches (e.g. Prout &
Clark 1996; Clark et al. 2000; Gavrilets & Waxman
2002; Haygood 2004), which have been extensively
used for studying sexual conflict. Our approximations
will imply that selection resulting from between- and
within-sexes interactions is weak and that genetic
variances are constant (see Gavrilets 2000; Gavrilets
et al. 2001 for an explanation of the mathematical
techniques used). Note that within the realm of our
approximations the degree of linkage between different
loci is irrelevant. We neglect microenvironmental
effects on the traits values because within our
approximations, these effects merely weaken selection.
To clearly identify the effects of different forces involved
in between-sexes interactions during reproduction on
the evolutionary dynamics, we neglect direct natural
selection on the traits considered.

Whenever possible, we will be using a Kolmogorov-
type approach (Kolmogorov 1936; translated in
Oliveira-Pinto & Conolly 1982), specifying only the
general properties of important functions rather than
their exact form. This approach greatly increases the
generality of theoretical results.
3. TWO-WAY CONFLICT OVER MATING
We start with a model formulated in terms of only two
traits: male mating stimulus trait y and female
Phil. Trans. R. Soc. B (2006)
resistance to mating trait x while neglecting male
remating suppression trait z. This is a model of a
two-way tug-of-war between male offence and female
reproductive tract and physiology (see figure 2). Within
this framework, any effects of previous matings on
remating probability are neglected so that function
j(x, y) describes mating behaviour of both virgin and
previously mated females.

We will assume that the preference function j(x, y)
depends on x and y only through their difference:
j(x, y)Zj(u), where uZyKx and that j is a sym-
metric, monotonically increasing S-shaped function,
such that j(KN)Z0, j(0)Z1/2, j(CN)Z1 such as in
figure 3a. This implies that large values of y and small
values of x promote mating, whereas small y and large x
make mating less probable. We assume that each male
mating with a given female fathers an equal proportion
of her offspring.

Let g( y) be the distribution of trait y among males.
The average preference of female x for males in the
population is

PðxÞZ

ð
jð yKxÞgð yÞdyzjð �yKxÞ:

Note that in this model 0%P(x)%1. Variable P(x) can
be viewed as a proxy for female mating rate (Gavrilets
2000; Gavrilets et al. 2001). Therefore, we will assume
that female fitness is a unimodal function of PZP(x):

wf ðxÞZwf ðPÞ;

with a maximum at PZPopt (0%Popt%1). (A unimodal
female fitness function wf(P) will arise if the costs of
remating to females keep increasing with P while the
corresponding benefits approach a limit.) This implies
that w0

f ðPÞO0 for P!Popt and w0
f ðPÞ!0 for POPopt.

Note that the average fitness of females is approxi-
mately wf ðPð �xÞÞ. By our assumptions, a male y that
mates with a female x fathers a (small) fraction of her
offspring proportional to 1/P(x). Therefore, male
fitness, i.e. the average contribution to offspring, is

wmð yÞZ

ð
jð yKxÞ

PðxÞ
f ðxÞdxz

jð yK �xÞ

jð �yK �xÞ
:

The average fitness of males is 1. Under this model, the
change in the average trait values per generation can be
approximated as

D �xZK
1

2
Gx

w0
f ðPÞ

wf ðPÞ
j0; ð3:1aÞ

D �yZ
1

2
Gy

j0

P
; ð3:1bÞ

where P, j and j 0 are evaluated at uZ �yK �x and the
coefficient 1/2 reflects the fact that each trait is subject
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Figure 4. The dynamics in Example 1. (a–c) Evolution towards the maximum female mating rate (‘males win’ scenario; condition
(3.4) is satisfied). (d–f ) Evolution towards an intermediate female mating rate (‘dynamic compromise between the sexes’
scenario; condition (3.4) is not satisfied). (a, d ) The dynamics on the ð �x; �yÞ phase-plane. (b, e) The dynamics of uZ �yK �x in time.
(c, f ) The dynamics of the average mating rate j(u) in time. The trajectories for different initial conditions are shown.
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Figure 3. The probabilities of mating and remating. (a) The probability of mating, j(u). (b) The probability of remating, f(v).
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to selection only in half of the whole population. This
shows that while males always evolve to increase their
trait (i.e. D �yR0 always), females always evolve to
achieve their optimum mating rate (so that D �x!0 if
P!Popt and D �xO0 if POPopt).

The change in uZ �yK �x per generation can be
written as

DuZ
1

2
Gy CGxP

w0
f ðPÞ

wf ðPÞ

� �
j0

j
: ð3:2Þ

The dynamics of u and, consequently, the dynamics of
the average mating rate P will depend on the relative
positions of the graphs of functions h1ZGy/Gx and
h2ZKPw0

f ðPÞ=wf ðPÞ. In particular, if the graphs do not
intersect, which happens if h1Oh2 for all 0%P%1, then
the average trait values �y and �x increase at a (quickly)
decreasing rate, their difference �yK �x quickly becomes
large so that females mate at the maximum rate (i.e.
P/1). This is a ‘males win’ scenario. Because in this
scenario, �yK �x/N, and, thus, j/1, one can also
interpret this regime as resulting in the evolution of
random mating. If the graphs of h1 and h2 intersect
once, the system will approach a dynamic state in
which both male and female traits keep increasing at
a constant rate while their difference approaches a
constant value and the mating rate P approaches a
constant value P� which is larger than Popt (i.e.
Phil. Trans. R. Soc. B (2006)
�zK �x/const:, j/const.!1, P/const.!Popt). This
is a ‘dynamic compromise between the sexes’ scenario.
In this regime, j!1 and, thus, the population
maintains non-random mating.

Example 1. Let the female fitness function be

wf ðPÞZ exp K
ðPKPoptÞ

2

2V

� �
; ð3:3Þ

where V is a parameter measuring the strength of
selection in females. Then h2ZP(PKPopt)/V. Note that
h2O0 only for POPopt. Now if

Gy

Gx

O
1KPopt

V
; ð3:4Þ

then h1Oh2 always. In this case, males eventually evolve
trait values that force females to mate at a maximum
rate (i.e. �yK �x/N, j/1, P/1; see figure 4a–c). This
outcome is promoted by increasing male variance Gy,
decreasing female variance Gx, increasing the optimum
female mating rate Popt, and decreasing the strength of
selection (i.e. increasing V ). If inequality (3.4) is not
satisfied, then the population approaches a dynamic
state at which female mating rate is

P� Z
Popt

2
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
opt

4
CV

Gy

Gx

s
; ð3:5Þ
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Figure 5. A two-way tug-of-war between male defence and
female reproductive tract and physiology.
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and is larger than Popt but smaller than 1 (see
figure 4d–f ). This outcome is promoted by decreasing
male variance Gy, increasing female variance Gx,
decreasing the optimummating ratePopt, and increasing
the strength of selection in females (i.e. decreasing V ).

These results represent a generalization of those in
Gavrilets et al. (2001; see also Gavrilets & Waxman
2002; Rowe et al. 2003 and a review of similar models
in Gavrilets & Hayashi 2005) for the case of more
general functions j and wf. Other generalizations have
also been explored. In particular, Gavrilets et al. (2001)
have incorporated stabilizing natural selection on x and
y which is neglected here. As expected, the addition of
stabilizing selection prevents runaway evolution
towards infinite trait values. Stabilizing selection can
also result in the appearance of cyclic behaviour, similar
to that in models of sexual selection (Iwasa &
Pomiankowski 1995), and in the existence of multiple,
simultaneously stable equilibria. In the latter case, the
eventual outcome of the evolutionary dynamics
depends on initial conditions. Gavrilets & Waxman
(2002) and Gavrilets & Hayashi (2005) have explicitly
incorporated multiallelic genes into this framework.
Their results (see also Frank 2000; Haygood 2004)
have demonstrated the possibility of the maintenance
of extensive genetic variation in female loci only or in
both male and female loci. Numerical individual-based
simulations of Gavrilets & Hayashi (2005) explicitly
accounting for random genetic drift confirmed the
generality of the conclusions based on simple analytical
approximations.

Generalizing from the simple model considered
above and more complex models studied elsewhere, it
appears that in models of two-way tug over mating
between male offence and female traits there are at least
six different dynamic regimes: (1) continuous coevolu-
tionary chase between the sexes, (2) evolution towards
an equilibrium, (3) cyclic evolution, (4) evolution
towards a line of equilibria with subsequent random
drift along this line, (5) ‘Buridan’s Ass’ regime
(Gavrilets & Waxman 2002) involving extensive
diversification in female alleles without comparable
diversification in male alleles and (6) extensive
diversification in both male and female alleles. Models
show that different dynamic regimes can be observed
with the same set of parameter values but under
different initial conditions. It is also possible that the
same population switches from one regime to another
as a result of stochastic perturbations due to random
genetic drift. Moreover, different sets of loci controlling
mating and fertilization in the same species can follow
different dynamic regimes. Some of these findings have
important implications for the quantitative theory of
speciation (Gavrilets 2004). The most relevant in this
regard are regime (1), which can result in allopatric
speciation as a by-product (Gavrilets 2000), and
regime (6), which can result in sympatric speciation
(Gavrilets & Waxman 2002).
4. TWO-WAY CONFLICT OVER REMATING
Next, we consider male remating suppression trait z
and female resistance to remating suppression trait x
but neglect the effects of male trait y. This is a model of
Phil. Trans. R. Soc. B (2006)
a two-way tug-of-war between male defence and female
reproductive tract and physiology (see figure 5). We
assume that mating is random.

Let f(x, z) be the probability that female x remates
after mating with a male z. For simplicity, we posit that
f depends on x and z only through their difference:
f(x, z)Zf(v), where vZzKx, and that f is a
symmetric, monotonically decreasing S-shaped func-
tion, such that f(KN)Z1, f(0)Z1/2, f(CN)Z0
such as in figure 3b. This implies that large values of
z and small values of x promote remating suppression,
whereas with small z and large x remating suppression
is ineffective. We assume that the last male to mate with
a female fertilizes all her eggs.

Consider a previously mated female x. The overall
probability that this female remates upon encountering
a male is

RðxÞZ

ð
fðzKxÞgðzÞdzzfð �zKxÞ;

where g(z) is the distribution of z among males. The
probability that female x stops remating after the kth
mating can be approximated as

pkðxÞZRðxÞkK1½1KRðxÞ�:

The average number of matings per female x is
PðxÞZ

PN
kZ1 kpkðxÞ, which simplifies to

PðxÞZ
1

1Kfð �zKxÞ
: ð4:1Þ

Note that in this model the meaning of P is different
from that in the previous model and that PR1 (because
each female mates at least once). The average remating
probability of females is

�RZ

ð
RðxÞf ðxÞdxzfð �zK �xÞ:

Now consider a male z. The probability that he
suppresses remating of a randomly chosen female is

SðzÞZ

ð
½1KfðzKxÞ� f ðxÞdxz1KfðzK �xÞ�:

The probability that he suppresses remating of a female
that has mated k times overall is

qkðzÞZ �RkK1
SðzÞ:

Therefore, the average number of females fertilized by
male z is QðzÞZ

PN
kZ1 qkðxÞ, which simplifies to

QðzÞZ
1KfðzK �xÞ

1Kfð �zK �xÞ
: ð4:2Þ

Let wf be the female fitness function which we write
as a function of P(x): wfZwf(P). As before, we assume
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Figure 6. The dynamics in Example 2. (a–c) Evolution towards zero female remating rate (‘males win’ scenario; condition (4.5a)
is satisfied). (d–f ) Evolution towards an intermediate female remating rate (‘dynamic compromise between the sexes’ scenario;
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that this function has a single maximum at PZPopt, so
that w0

f ðPÞO0 for P!Popt and w0
f ðPÞ!0 for POPopt.

Although, by our assumption, a single mating is
sufficient to fertilize all eggs, Popt can be larger than 1
if there are some additional benefits of mating for
females (Arnqvist & Nilsson 2000; Jennions & Petrie
2000). Note that the average fitness of females is
approximately wf ðPð �xÞÞ. Male fitness is simply the
number of females fertilized: wm(z)ZQ(z), and the
average fitness of males is approximately 1.

The changes in the mean trait values per generation
are

D �xZK
1

2
Gxf

0P2 w
0
f ðPÞ

wf ðPÞ
; ð4:3aÞ

D �zZK
1

2
Gzf

0P ; ð4:3bÞ

where both f 0 and P are evaluated at �zK �x. Note that
whereas D �zO0 always (i.e. males always evolve to
suppress remating), D �x is positive or negative depend-
ing on whether the average number of matings per
female P is larger or smaller than Popt (i.e. females
always evolve to achieve an optimum mating rate Popt).

The change in vZ �zK �x per generation can be
written as

DvZ
1

2
KGz CGxP

w0
f ðPÞ

wf ðPÞ

� �
f0P : ð4:4Þ

This equation is very similar to equation (3.2). The
dynamics of �zK �x, and consequently the dynamics of
the average mating rate P, will depend on the relative
positions of the graphs of functions h1ZGz/Gx and
h2ZPw0

f ðPÞ=wf ðPÞ. In particular, if the graphs do not
Phil. Trans. R. Soc. B (2006)
intersect, which happens if h1Oh2 for all PR1, then the
average trait values �z and �x increase at a (quickly)
decreasing rate, their difference �yK �x quickly becomes
very large, and males completely suppress remating
(i.e. �zK �x/N, f/0, P/1). This is a ‘males win’
scenario. If the graphs of h1 and h2 intersect once, the
system will approach a dynamic state in which both
male and female traits keep increasing at a constant rate
while their difference approaches a constant value and
the mating rate P approaches a constant value which is
smaller than Popt (i.e. �zK �x/const:, f/const.!1,
P/const.!Popt). This is a ‘dynamic compromise
between the sexes’ scenario.

Example 2. Let the female fitness function be
given by equation (3.3) as in example 1. Now
h2ZP(PoptKP)/V. Note that h2O0 only for POPopt.
Assume for simplicity that PoptR2. Now if

Gz

Gx

O
P2
opt

4V
; ð4:5aÞ

then functions h1 and h2 do not intersect and complete
remating suppression evolves (i.e. �zK �x/N, f/0,
P/1; see figure 6a–c). This outcome is promoted by
increasing male variance Gz, decreasing female var-
ianceGx, decreasing the optimummating rate Popt, and
decreasing the strength of selection (i.e. increasing V ).
If

Gz

Gx

!
PoptK1

V
; ð4:5bÞ

then functions h1 and h2 intersect once and the
population approaches a dynamic state at which P is
between PoptK1 and Popt (see figure 6d–f ). Exactly,
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PZP��, where

P�� Z
Popt

2
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
opt

4
KV

Gz

Gx

s
:

This outcome is promoted by decreasing male variance
Gz, increasing female variance Gx, increasing the
optimum mating rate Popt, and increasing the strength
of selection (i.e. decreasing V ). If

P2
opt

4V
O

Gz

Gx

O
PoptK1

V
; ð4:5cÞ

then functions h1 and h2 intersect twice and the
dynamics depend on the initial value of P (see
figure 6g–i ). If P is small, exactly if P!P��, complete
remating suppression evolves ( �zK �x/N, f/0, P/1).
Otherwise, the population approaches a dynamic state
at which P is smaller than Popt (exactly, PZP��).
5. THREE-WAY CONFLICT OVER MATING
Finally, we consider all three traits x, y and z
simultaneously. This is a model of a three-way tug-of-
war between male offence, male defence and female
reproductive tract and physiology (see figure 1). As a
first step of building a theory of remating, we will
assume that each female is subject to two mating
attempts by randomly chosen males (cf. Johnston &
Keller 2000; Ball & Parker 2003).

Let j(x, y) be the probability that a virgin female x
accepts male y (0%j%1). We will assume that j

increases with y but decreases with x (so that j0
x!0,

j0
yO0). The overall probability that a virgin female x

mates upon encountering a randomly chosen male is

MðxÞZ

ðð
jðx; yÞgð y; zÞdy dzzjðx; �yÞ: ð5:1Þ

The overall proportion of virgin females x that reject
the first male they encounter is 1KM(x).

Let f(x, y, z) be the probability that a female x that
has already mated with a male with remating suppres-
sion trait zmates again with a male with stimulus trait y
(0%f%1). We will assume that f increases with y but
decreases with x and z (so that f0

x!0, f0
yO0, f0

z!0).
The overall probability that a previously mated female x
mates for the second time is

RðxÞZ

ð ð ð ð
fðx;y2;z1Þgðy1;z1Þgðy2;z2Þdy1 dz1 dy2 dz2

zfðx; �y; �zÞ; ð5:2Þ

where y1, z1 and y2, z2 are the corresponding trait
values of the first and second males. Then the
proportions of females x that reject both males they
encounter, accept only the second male, accept only
the first male and mating twice are

P00ðxÞZ½1KMðxÞ�2; ð5:3aÞ

P01ðxÞZ½1KMðxÞ�MðxÞ; ð5:3bÞ

P10ðxÞZMðxÞ½1KRðxÞ�; ð5:3cÞ

P11ðxÞZMðxÞRðxÞ; ð5:3dÞ

respectively. Let the overall normalized fertility (which
we treat as the lifetime fitness) of females mating once
Phil. Trans. R. Soc. B (2006)
and twice be 1 and 1Cs, respectively (sOK1). If sO0,
females get fitness advantage from multiple matings; if
s!0, second matings reduce female overall fitness. In
terms of the previous model, s!0 corresponds to
PoptZ1, whereas sO0 corresponds to PoptZ2. The
female fitness function can be written as

Wf ðxÞZP01ðxÞCP10ðxÞCð1CsÞP11ðxÞ: ð5:4Þ

Consider a male ( y, z). The probability that he is
accepted as a first mate by a female that does not mate
anymore or by a female that did not mate on the first
attempt is

Sonlyð y;zÞZ

ððð
jðx;yÞ½1Kfðx;y2;zÞ�f ðxÞgðy2;z2Þdxdy2 dz2

C

ððð
½1Kjðx;y1Þ�jðx;yÞf ðxÞgðy1;z1Þdxdy1 dz1

zjð �x;yÞ½1Kfð �x; �y;zÞ�C½1Kjð �x; �yÞ�jð �x;yÞ:

The probability that he is accepted as a first mate by a
female that later remates is

S1ð y; zÞZ

ððð
jðx; yÞfðx; y2; zÞf ðxÞgðy2; z2Þdx dy2 dz2

zjð �x; yÞfð �x; �y; zÞ: ð5:5aÞ

The probability that this male is accepted as a second
mate is

S2ð yÞZ

ððð
jðx; y1Þfðx; y; z1Þf ðxÞgðy1; z1Þdx dy1 dz1

zjð �x; �yÞfð �x; y; �zÞ: ð5:5bÞ

Note that this probability does not depend on z.
Assume that the second male fathers a proportion r of
the female’s offspring. Then male fitness can be written
as

Wmð y;zÞZSonlyð y;zÞCð1CsÞ½ð1KrÞS1ð y;zÞCrS2ð yÞ�:

ð5:6Þ

Then, the equations for the change in �x, �y and �z per
generation take form

D �xZ
1

2
Gx½ð2K2jC sfÞj0

x C sjf0
x�; ð5:7aÞ

D �yZ
1

2
Gyf½2KjC ðsKrKrsÞf�j0

y Crð1C sÞjf0
yg;

ð5:7bÞ

D �zZ
1

2
GzðsKrKrsÞjf0

z; ð5:7cÞ

where both functions j and f and their derivatives
(with respect to the variables given by the subscripts)
are evaluated at xZ �x; yZ �y; zZ �z.

Three general observations follow immediately.
First, the male remating suppression trait z keeps
continuously increasing (although at a quickly decreas-
ing rate) if

s!
r

1Kr
; ð5:8Þ

that is, if female fitness advantage from the second
mating is smaller than the relative advantage of the
second male over the first male in fertilizing the
female’s eggs. Note that this condition is always
satisfied if the second mating does not bring any
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benefits to females (i.e. if s!0). If condition (5.8) is not
satisfied, the male remating suppression trait z keeps
continuously decreasing. Second, the male stimulus y
keeps continuously increasing: D �yR0. (The proof
follows from the fact that 1C(sKrKrs)fR0 for all
possible values of s, including sZK1.) How these two
dynamics affect the evolution of remating probability
depends on the dynamics of �x and �y. Third, if sz0 (i.e.
the benefits of remating are small) or jz0 (i.e. virgin
females are very reluctant to mate), then D �x%0
(female resistance decreases). If jz1 (virgin females
are eager to mate), then the sign of D �x is opposite of
that of s. In particular, female resistance trait will
increase if s!0 (i.e. if the second mating decreases
female fitness).

As before, we assume that the preference function
j( y, x) depends on x and y only through their
difference: j( y, x)Zj( yKx), where j satisfies the
same conditions as before (see figure 3a). We consider
two models for remating suppression which both will
be different from the one used in the two-way tug-of-
war considered above. In the first model, the prob-
ability that a female x that has already mated with a
male with remating suppression trait zmates again with
a male with stimulus trait y is

fðx; y; zÞZjð yKxÞrðzÞ; ð5:9aÞ

where r(z) is a monotonically decreasing function
measuring the degree of mating suppression caused
by male z (0%r(z)%1, r 0(z)%0). In this model, the
effects of the two male traits interact in a multiplicative
way. In the second model, remating suppression is
incorporated by assuming that the male mating with a
female effectively increases her trait value for the next
mating. Specifically, the probability that a female x that
has already mated with a male with remating suppres-
sion trait zmates again with a male with stimulus trait y
is set to

fðx; y; zÞZjð yKðxCzÞÞ; ð5:9bÞ

that is, we measure all three traits on the same scale and
avoid introducing an additional function. In this model,
the effects of the two male traits interact in a non-
multiplicative way.

Under the first model, the dynamic equations
simplify to

D �xZK
1

2
Gxf2K2jðuÞ½1Ksrð �zÞ�gj0ðuÞ; ð5:10aÞ

D �yZ
1

2
Gyf2KjðuÞ½1Ksrð �zÞ�gj0ðuÞ; ð5:10bÞ

D �zZ
1

2
GzðsKrKrsÞjðuÞ2r 0ð �zÞ; ð5:10cÞ

where uZ �yK �x. Note that j 0(u)O0. In this model,
males completely suppress remating ð �z/N; rðzÞ/0Þ,
if condition (5.8) is satisfied. Otherwise males com-
pletely loose remating suppression ability
ð �z/KN; rðzÞ/1Þ. Considering the difference
D �yKD �x, it is straightforward to show that in both
cases (i.e. both for rZ0 and rZ1), u keeps increasing
and, thus, mating rate j approaches one.
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Summarizing, if remating benefits for females are
relatively low (i.e. condition (5.8) is satisfied), the
population evolves to a state with random mating of
virgin females (jZ1) and no subsequent remating
(rZ0, fZ0). If remating benefits for females are
sufficiently high (i.e. condition (5.8) is not satisfied),
then remating suppression disappears completely
(rZ1, fZj) and the population evolves random
mating (i.e. jZ1). In either case, the average trait
values evolve at (quickly) decreasing rates. Note that
these conclusions do not depend on genetic variances.

Under the second model, the dynamic equations
simplify to

D �xZ
1

2
Gxf½2jðuÞKsjðvÞK2�j0ðuÞKsjðuÞj0ðvÞg;

ð5:11aÞ

D �yZ
1

2
Gyf½2KjðuÞC ðsKrKrsÞjðvÞ�j0ðuÞ

Crð1C sÞjðuÞj0ðvÞg; ð5:11bÞ

D �zZ
1

2
GzðKsCrCrsÞjðuÞj0ðvÞ; ð5:11cÞ

where uZ �yK �x and vZ �yK �xK �z. Note that
j 0(u), j 0(v)O0.

To analyse this model, we consider the equations for
DuZD �yKD �x and DvZD �yKD �xKD �z. From these
equations, it is straightforward to show that there are
always two equilibria: (i) j(u)Zf(u)Z1, describing a
state with randommating and no remating suppression
and (ii) j(u)Z1, f(u)Z0, describing a state with
random mating and complete suppression of remating.
If the second mating is strongly deleterious, specifically
if

s!K
ð1KrÞGy

Gx C ð1KrÞGy

; ð5:12aÞ

there is an additional equilibrium with j(u)Zj�!1
(non-random mating of virgin females) and j(v)Z1
(no remating suppression). Here,

j� Z 1K
jsGx CGyð1C sÞð1KrÞj

2Gx CGy

: ð5:12bÞ

This equilibrium is a saddle point and is never stable.
Furthermore, one can show that the system evolves to a
state with randommating and no remating suppression
(j(u)Zj(v)Z1) if

sO
rðGzKGyÞ

Gx CrGy C ð1KrÞGz

; ð5:13Þ

that is, if remating benefits to females are sufficiently
large (assuming sO0) or remating losses are not too big
(assuming s!0). This outcome is promoted when
genetic variation in male offence (Gy) is larger than that
in male defence (Gz). Otherwise, complete suppression
of remating evolves (i.e. v/KN, j(v)/0). This can
happen even when females gain from the second
mating (i.e. sO0), provided the genetic variation in
male defence (Gz) is larger than that in male offence
(Gy). Note that in contrast to the previous model, here
genetic variances matter a lot.
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not satisfied). The trajectories for different initial conditions are shown.
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Figure 8. The blow-up of the upper right corner of figure 7d. The trajectories eventually approach the state with j(u)Zj(v)Z1
(random mating, no remating suppression).
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Summarizing, if condition (5.13) is satisfied, the
system evolves to a state with j(u)Zj(v)Z1 (random
mating, no remating suppression). If condition (5.13)
is not satisfied, the system evolves to a state with
j(u)Z1, j(v)Z0 (random mating, complete remating
suppression). Note that during these dynamics, the
male trait z continuously increases or decreases
depending on whether condition (5.8) is satisfied or
not. Possible dynamics are illustrated in figures 7 and 8
in terms of the probabilities of mating (j(u)) and
remating (j(v)) for average phenotypes.
6. DISCUSSION
Here, we have analysed three related mathematical
models of sexual conflict. The first model considers a
two-way conflict between male offence and female
reproductive tract and physiology. The role of male
Phil. Trans. R. Soc. B (2006)
offence is played by a male trait stimulating females to

mate, whereas the female trait is interpreted as

‘resistance to mate’. We assumed that all males that

have mated with a given female father an equal

proportion of her offspring. In this conflict, males are

evolving to maximize female mating rate, whereas

females are evolving to maintaining an optimum

mating rate Popt. We showed that there are two possible

dynamic regimes. In the first regime, males manage to

maximize female mating rate. This is a ‘males win’

scenario. In this regime, females do not exhibit any

mating preferences so that random mating evolves in a

population that initially mates non-randomly. In the

second regime, both sexes are locked in coevolutionary

chase, where both male ‘stimulus’ trait and female

resistance trait keep continuously increasing while

female mating rate is at a constant value that is

intermediate between female and male optimums
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(and is larger than Popt). This is a ‘dynamic compro-

mise between the sexes’ scenario. The first regime is
promoted by large genetic variance in males, small

genetic variance in females, higher values of Popt and
weaker selection in females. The second regime is

promoted by smaller genetic variance in males, larger
genetic variance in females, lower values of Popt and
stronger selection in females.

The second model considers a two-way conflict

between male defence and female reproductive tract
and physiology. The role of male defence is played by

the male’s remating suppression ability, whereas the
female trait is interpreted as ‘resistance to remating

suppression.’ We assumed that the male who manages

to suppress female remating fathers all of her offspring.
In this conflict males are evolving to completely

suppress female remating, whereas females are evolving
to maintain an optimum remating rate Popt. The

behaviour of this model is similar to that of the first
one. In particular, we showed that there are two

possible dynamic regimes. In the first regime, males
manage to completely suppress female remating so that

monandry evolves in an initially polyandrous popu-
lation. This is a ‘males win’ scenario. In the second

regime, both sexes are locked in coevolutionary chase,
where both male and female traits keep continuously

increasing while female remating rate is at a constant
value that is intermediate between female and male

optimums (and is smaller than Popt). This is the
‘dynamic compromise between the sexes’ scenario.

The first regime is promoted by large genetic variance
in males, small genetic variance in females, smaller

values of Popt and weaker selection in females. The
second regime is promoted by smaller genetic variance

in males, larger genetic variance in females, larger

values of Popt and stronger selection in females. Under
some parameter combinations, which of the two

regimes is realized depends not only on parameter
values but also on initial conditions.

The third model considers a three-way conflict
between male offence, male defence and female

reproductive tract and physiology. In this conflict,
males are evolving to stimulate females into mating and

then to completely suppress female remating, whereas
females are evolving to maintain an optimum number

of matings. Two important limitations of this model are
that (i) each female mates no more than twice, and that

(ii) the first and second males father fixed proportions
of her offspring. We analysed two versions of this model

differing in the way the interaction of male offence and
defence was defined. The overall conclusions are

qualitatively similar in both models. Specifically, if the
benefits of remating for females are sufficiently high,

random mating evolves and remating suppression

disappears completely. Otherwise, complete remating
suppression can evolve even if females gain fitness

advantage from remating. Interpreting these outcomes
in terms of winning and losing sides is not straightfor-

ward (and, probably, not productive) because of the
complexity of three-way interactions and the fact that

with no more than two matings, the female’s interest
coincides with that of either male offence (if PoptZ2) or

male defence (if PoptZ1).
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Overall, these models support previous verbal

arguments about the possibility of continuous coevolu-
tionary chase between the sexes driven by two- and

three-way inter-sexual antagonistic interactions. At the

same time, the models clarify these arguments by
identifying various additional evolutionary dynamics

and important parameters (e.g. genetic variances,

optimum mating rates, strength of selection in females
and the relative contributions of first and second males

into offspring) and emphasizing the importance of

initial conditions. The models highlight the complexity
of expected evolutionary dynamics and the difficulties

in making clear-cut conclusions and predictions. In
some cases, the models have been able to identify

simple and intuitive conditions in terms of measurable

parameters for observing one outcome or another (e.g.
condition (5.8), which tells one that males completely

suppress remating if female fitness advantage from the

second mating is smaller than the relative advantage of
the second male over the first male in fertilizing the

female’s eggs). Obtaining empirically-based infor-
mation on these parameters would increase the

predictive power of the models.

The models also show that sexual conflict can result
in the evolution of monandry in an initially polyan-

drous species and in the evolution of random mating in

a population initially exhibiting non-random mating.
These outcomes are driven by selection related to the

costs and benefits of mating and remating for females.

An encouraging feature of the models studied here,
which strongly supports the generality of theoretical

conclusions made, is that similar outcomes are
observed in different models under a minimum number

of assumptions. At the same time, the models do have

certain limitations. The most crucial appears to be the
assumptions that genetic variances are constant and

that direct natural selection on the traits is absent.

Removing these limitations is a necessary next step.
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