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Abstract
We analyze the long term evolution of a continuous trait subject to frequency

dependent disruptive selection, and controlled by a single diploid, additive locus. Our
simple selection model is a mathematical approximation to many complex systems of
ecological interactions resulting in disruptive selection, like, for example, scramble
competition and habitat heterogeneity. A polymorphism of two specific alleles at equal
frequencies is the unique long term equilibrium, or ESS, of this system. We then study the
evolution of direct assortative mating for the selected trait, through mutations of small
effect at modifier loci controlling the degree of assortment. The mating process is described
by a model that allows for possible costs of assortment. Unless the cost of assortment is too
high, strength of assortment always increases in populations where mating is random or
weakly assortative, and also in populations that already practice very strong assortative
mating. However, even if it has no cost, assortment can increase continuously from random
mating to complete isolation, resulting in sympatric speciation, only if selection is
sufficiently strong. In fact, only a modest degree of assortment, corresponding to a
continuouly stable ESS, can be attained from random mating, when selection intensity is
below a certain threshold.

KEYWORDS: assortative mating; sympatric speciation; long term evolution; polymorphic
ESS; competition; frequency dependent selection; MEAST; PEAST; evolutionary
singularity; evolutionary branching point.

1. Introduction
It is well known that under certain conditions frequency-dependent selection can

maintain genetic variation (e.g., Cockerham et al., 1972; Clarke, 1979; Udovic, 1980; Wilson
& Turelli, 1986; Asmussen & Basnayake, 1990). The question of how general and common
these conditions are in natural populations remains largely unsettled. Recently, a new
theoretical framework – the adaptive dynamics – has been developed that suggests that
under certain types of ecological interactions (e.g., competition, multiple niches) biological
systems naturally evolve, through a sequence of fixations of mutations, towards the areas
of parameter space where genetic variation is maintained (e.g., Christiansen & Loeschcke,
1980; Christiansen, 1991; Metz et al., 1996; Eshel et al., 1997; Geritz et al., 1998; Kisdi &
Geritz, 1999). An interesting consequence of the adaptive dynamics is a possibility for the
maintenance of genetic variation under apparently disruptive selection. In such a situation,
intermediate genotypes (e.g., heterozygotes) are selected against by frequency-dependent
selection but are recreated each generation as a result of random mating, segregation and
recombination. Given reduced fitness of intermediate genotypes, one may expect that any
tendency to assortative mating for the selected trait will be favoured by natural selection
whenever its possibility arises in the population, because this will decrease the production
of maladaptive genotypes. This idea forms the basis of both the reinforcement scenario
(e.g., Dobzhansky, 1940; Butlin, 1987; Howard, 1993) and of many scenarios of sympatric
speciation (e.g., Maynard Smith, 1966; Udovic, 1980; Felsenstein, 1981; Kondrashov, 1986;
Doebeli, 1996; Dieckmann & Doebeli, 1999; Kondrashov & Kondrashov, 1999; Geritz &
Kisdi, 2000).

Most of the theoretical works on reinforcement and sympatric speciation have
considered not the whole process of the evolution towards complete reproductive isolation



3

but rather single (mostly initial) steps resulting in some assortative mating. The idea was
that if some level of assortative mating can get established in a population which initially is
random  mating, then further changes that make assortative mating stronger and stronger
would proceed easily, leading eventually to complete reproductive isolation. A limited
amount of simulations focusing on the whole process of speciation seem to confirm this
expectation (e.g., Dieckmann & Doebeli, 1999; Kondrashov & Kondrashov, 1999). However,
the complexity of the models used in these simulations and a large number of parameter
combinations to be explored make any generalizations very difficult. For this reason, it
would be  beneficial to complement numerical studies of complex models with analytical
(and numerical) studies of much simpler models with transparent interpretation.

Here, we will consider a type of model that according to Felsenstein (1981) should
provide the most favorable conditions for the evolution of reproductive isolation. We will
assume that there is a diploid additive locus controlling a continuous trait which
simultaneously is under frequency dependent disruptive selection and is also used in
assortative mating. By the latter assumption our model is of the type called "one-allele" by
Felsenstein (1981) in opposition to the "two-allele"  type – considered less favourable to
evolution of reproductive isolation – where selection and assortment act on distinct
characters. Assortment for the character subject to selection may be achieved indirectly,
through the development of linkage disquilibrium with the character subject to assortment.
We assume that the mechanics of assortment is according to the model of Gavrilets and
Boake (1998), which allows for a possible cost of assortment due to delays in mating caused
by mate choice. First, we will show that for the selected trait there is a polymorphic long
term equilibrium or ESS, namely a stable equilibrium of two specific alleles that cannot be
invaded by any other mutant allele. We then will assume that a second genetically
controlled continuous trait determines the intensity of assortment, so that its range of
variation spans the whole spectrum of mating behavior, from random mating to complete
isolation among the two homozygotes of the primary trait occurring at the polymorphic
ESS. By considering the dynamics of single locus mutations of small effect for this mating
trait, we will show that, provided the cost of assortment is not too high, a small degree of
assortment can always be introduced in a random mating population while, conversely, a
weakening of assortment is always prevented whenever complete isolation prevails in the
population. But, in spite of these results, we also will demonstrate, quite surprisingly, that
unless selection on the primary trait is strong enough, evolution of assortment starting
from random mating cannot progress by small changes all the way to complete isolation
because it will stop at some intermediate stage that has the characteristics of a (weak) ESS
level of assortment. Apparently in contrast with recent simulation results based on a model
very similar to ours (e.g., Dieckmann & Doebeli, 1999), but in agreement with old and
recent results based on models of the "two-allele" type (e.g., Felsenstein, 1981; Kondrashov
& Kondrashov, 1999; Dieckmann & Doebeli, 1999), we thus conclude that disruptive
selection per se is not sufficient for sympatric speciation to occur because it is also required
that the level of selection against intermediate types be strong enough.

2. Frequency-dependent disruptive selection in a random mating population

Types of evolutionary singularities
In the long term evolution of continuous traits there are points of the phenotypic

space that have the nature of "evolutionary singularities" (Geritz et al., 1998) in the sense
that a qualitative change of the evolutionary dynamics of monomorphic populations takes
place in their vicinity. The two most important kinds of such singularities were discussed
and contrasted for the first time by Christiansen (1991) who named them MEAST and
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PEAST respectively (acronyms for monomorphic or polymorphic evolutionarily attainable
stable traits). Both these singularities have the property – called continuous stability (Eshel
& Motro, 1981; Eshel, 1983), or m-stability (Taylor, 1989), or convergence stability
(Christiansen, 1991) – that mutations of small effect can invade a monomorphic population
with a trait value near the singular point if and only if  they change the trait in its direction.
Thus, both MEAST and PEAST are evolutionary attractors in the sense that in long term
evolution a trait tends to move toward one of such points, as long as the population
remains monomorphic. The difference between the two kinds of singularities is that a
monomorphic population at a MEAST cannot be invaded by any mutation, while, on the
opposite, any mutation can invade a PEAST. A MEAST is the same as a continuously stable
ESS as defined by Eshel and Motro (1981) and Eshel (1983). Thus it identifies a
monomorphic long term equilibrium which, at least for traits with the simple clonal
(asexual) genetics, is locally stable in the long term dynamics (Eshel et al., 1997). This means
that a population not too far away from a MEAST will indeed converge – through a
sequence of  invading mutations – to the monomorphic state identified by the singularity.

The long term implications of a PEAST are not as firmly established. What is certain
is that once a population is sufficiently close to a singularity of this kind a protected
polymorphism necessarily arises which is maintained by disruptive selection, the opposite
of what would occur near a MEAST where, if a polymorphism arises it would be
maintained by stabilizing selection (through heterozygote advantage). As a consequence of
this selection regime, further evolution through invading mutations tends to be in the
direction of increasing the phenotypic variance of the population (Christiansen &
Loeschcke, 1980; Christiansen, 1991; Eshel et al., 1997; Geritz et al., 1998; Kisdi & Geritz,
1999). According to the theory of adaptive dynamics PEASTs might be a major cause of
branching of the phylogenetic tree. This view is based mostly on results from models with
asexual reproduction, (Geritz et al., 1998; Geritz et al., 1999; Kisdi, 1999; Doebeli &
Dieckmann, 2000) but also in the more important case of sexual reproduction and
mendelian genetics it is supported by results on secondary evolution of assortative mating
and sympatric speciation (Dieckmann & Doebeli, 1999; Geritz & Kisdi, 2000). Here we will
analyze the role of PEAST in sexual diploid species with respect to both maintenance of
polymorphism and speciation.

Singular points of the PEAST kind have been discovered in a great variety of
adaptation problems, including intraspecific exploitative competition (Christiansen &
Loeschcke, 1980), sex-ratio (Uyenoyama & Bengtsson, 1982), resource-exploitation intensity,
susceptibility to predation and intraspecific contests (Abrams et al., 1993), multiple niches
(Geritz et al., 1998), asymmetric competition (Kisdi, 1999), seed size (Geritz et al., 1999),
mutualism and prey-predator interactions (Doebeli & Dieckmann, 2000). Accordingly, the
details of the fitness representations specifically appropriate to each of these situations are
quite diverse and might be very complicated. We instead, rather than focussing on a
particular example, prefer to adopt a fitness representation that, on one hand, is
mathematically simple and, on the other hand, can be taken as a good approximation for
any adaptation problem involving a PEAST if the current values of the evolving character
are close enough to the singularity.

A simple model of frequency dependent disruptive selection
The context in which evolutionary singularities appear is that of the initial evolution

of a mutation introduced at a small frequency in a monomorphic resident population in
equilibrium. In this context, assuming discrete generations, let v(y,x) denote the intrinsic
(asymptotic) rate of increase of the subpopulation of mutants when the trait value of
residents is x and that of mutants is y, and let v(x,x)=1. Hence, the mutation invades if



5

v(y,x)>v(x,x)=1, while it cannot invade if v(y,x)<1. If v(y,x) is such as to admit a PEAST
singularity in the interior of the phenotypic domain, without loss of generality we may
assume it to be located at x=x°=0. It then follows from the definiton of PEAST that,
avoiding non-generic cases, v(y,x) must have the following properties (Eshel, 1983; Taylor,
1989; Christiansen, 1991; Geritz et al., 1998)

vy(0,0)=0  , (1.1)

vyy(0,0)>0  , (1.2)

vyy(0,0)+vyx(0,0)<0  , (1.3)

where v x x
v y x

yy
y x

( , )
( , )= ∂
∂ =

, v x x
v y x
y xyx

y x

( , )
( , )= ∂

∂ ∂
=

2
, etc.. Conditions (1.1) and (1.2) ensure

that v(y,x) has a local minimum with respect to y at y=x=x°=0, so that x° can be invaded by
any mutant of small effect. Condition (1.3) ensures the continuous stability of x°=0, so that
this singularity is an evolutionary attractor for monomorphic populations. The simplest
function with these properties is the quadratic in y and x

v(y,x)=1+αy2−(α+β)xy+βx2  ,  with  0<α<β  . (2)

The limitations on the parameters α and β are imposed by (1.2) and (1.3). In fact, (1.2) is

violated if α≤0, while (1.3) is violated if α≥β. As long as x and y are not too far from x°=0,
this choice for v(y,x) is a good approximation to the rate of increase of a mutant in a
monomorphic population for any adaptation problem that admits a PEAST (Metz et al.,
1996).

To produce a simple frequency dependent selection model in which invasion
dynamics is governed by (2), we stipulate that fitness (viability) of individuals in a
population of arbitrary phenotypic composition is determined by the outcome of random
pairwise interactions in which the payoff to an individual of phenotype y who has an
opponent of phenotype x is given by v(y,x). Hence, in any very large population where the
trait has mean x  and variance s2, the average fitness of generic individuals of phenotype y
is given by

w(y, x ,s2)=E{v(y,x)|y}=1+αy2−(α+β) x y+β( x 2+s2)  . (3)

Obviously, this fitness is a linear function of the phenotypic frequencies, with positive
coefficients, v(y,x), that depend on the particular set of trait values, x, currently available in
the population. Hence, as ever new genetic variants invade and spread in the population,
the intensity and characteristics of selection changes in the course of long term evolution.
The mean fitness of the population is

w=E{w(y, x ,s2)}=1+(α+β)s2 . (4)

Hence, the trait values that are favoured by selection in the current population are those
that satisfy
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w(y, x ,s2)> w  ,  or  αy2−(α+β) x y+β x 2>αs2 . (5)

The disruptive character of selection becomes conspicuous when x ≈x°=0. In fact for x =0
condition (5) indicates that, since α>0, a trait y is favoured if and only if y2>s2.

It is interesting that, in spite of its rather abstract derivation, the fitness regime
represented by (3) is fully equivalent to that of the model of intraspecific exploitative
competition of Christiansen and Loeschcke (1980), later adopted also by Dieckmann and
Doebeli (1999). Formally this model – based on Lotka-Volterra competition equations
parametrized in terms of Gaussian resource spectrum and utilization functions – appears
quite complex. But then it is reduced to (3) by the approximations permitted by the
assumptions that all individual niche locations are close to the mean of the resource
spectrum, equal to zero, and that the total population size is always at the equilibrium
corresponding to the current population composition. With this interpretation the
parameters α and β satisfy the limitations of (2) if the resource spectrum is wider than the
individual niches, and both decrease as the width of individual niches increases.

Genetic assumptions
We complete the formulation of our model with the two additional assumptions that

variation of the selected trait is determined by a single additive, diploid locus, and that
genetic or developmental constraints limit such variation to the finite range [-xL,xL].
Without loss of generality we may let xL=1, so that the phenotypic domain in our model is
given in fact by the interval [-1,1]. The assumption of one additive locus is also made by
Christiansen and Loeschcke (1980), Kisdi and Geritz (1999), and  Geritz and Kisdi (2000),
and genetic additivity is central to the analysis of sympatric speciation of Dieckmann and
Doebeli (1999).

If mating is at random with respect to the selected trait, the trait value of a random
individual from the newborn population is x=e+e', where e and e' are independent,
identically distributed random variables representing, respectively, the effects of the
maternal and the paternal allele in the  genotype of the given individual. Hence, if the
allelic effects in the population have mean e  and variance sa

2 , we easily derive from (3) and
(4) that in this population the mean fitness of an allele with effect d is

wa(d, e , sa
2 )=1+αd2−2β ed+(2β−α) e 2+(2β+α) sa

2   , (6.1)

and the overall mean fitness is

w=1+2(α+β) sa
2   . (6.2)

The polymorphic ESS
As demonstrated by Christiansen and Loeschcke (1980), in a population conforming

to the above model no equilibrium may involve more than two distinct alleles. Additivity,
together with the limitation of the phenotypic domain to [-1,1], implies that the allelic
domain – the set of possible allele effects – is limited to the interval −[ ]1

2
1
2, . By a standard

analysis it can be shown that the two extreme alleles of this set, of effects e− = − 1
2  and

e+ = 1
2 , may coexist in a locally stable equilibrium where each has a frequency of 1

2 , and
that this is the only equilibrium with these two alleles. This polymorphism is protected
because the two alleles can invade each other, as it is easy to prove from the general
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condition for a mutant d to invade a population where the effects of the resident alleles
have mean e  and variance sa

2 , namely

w d e s wa a( , , )2 >   ⇔  αd2−2β ed+(2β−α) e 2>α sa
2   . (7)

In a population where the two alleles {e− , e+} are in equilibrium obviously e=0 and
sa

2 1
4= , which is the largest possible variance for a distribution over the interval −[ ]1

2
1
2, . It

follows that no mutant allele can invade such a population. In fact, condition (7) reduces in
the present case to d2> 1

4 , which can never be satisfied since any mutant different from the
resident alleles is limited by − < <1

2
1
2d . We conclude that the population state E0,

consisting of the two extreme alleles, { e− , e+}, in equal frequency, is a polymorphic long
term equilibrium. Moreover E0 is the only long term equilibrium possible in the present
system, because for every other population state a mutant can be found that can invade it.
In fact, consider the mutant e−  if in the resident population e≥0, or the mutant e+  if e<0.
In either case invasion condition (7) reduces to

α β β α α1
4

2 22+ + − >e e sa( )   ,

which is always true because sa
2 1

4<  for any population state different from E0. As a
conclusion of this analysis we may therefore state the following

RESULT 1. In a system of frequency dependent disruptive selection defined by the fitness
function of Eq. (3), operating on a continuous trait controlled by a single additive, diploid
locus with allelic effects limited to the finite range −[ ]1

2
1
2, , there is, under random mating, a

unique long term equilibrium, or ESS, identified by the polymorphic population state, E0,
where each of the two alleles with extreme effects is present with a frequency of 1

2 .

3. Assortative mating for a trait under disruptive selection
Once a random mating population has settled in the polymorphic long term

equilibrium E0, its phenotypic variance is only s2= 1
2 . Hence its mean fitness, equal to

1+ α β+
2 , by Eq. (4), is far from the maximum value it could have, namely 1+α+β. This is

because half of its members, being heterozygotes, have a trait value, x=0, that gives them
the smallest fitness, w(0,0, 1

2 )=1+ β
2  (see Eq. 3), while the homozygotes, with phenotype x=-1

or x=1, have the largest fitness, namely 1+α+ β
2 . Since assortative mating for the trait would

tend to decrease the frequency of heterozygotes, individuals adopting such mating habit
should have, on average, offspring with a larger phenotypic variance and therefore a
greater fitness than the resident population. Thus it is reasonable to expect that assortative
mating should evolve in this population.

The model of assortative mating
Most studies of the evolution of reproductive isolation under disruptive selection

concentrate on the establishment of a correlation, by way of linkage disequilibrium,
between the selected trait and another trait which, for some reason, happens to be already a
target of assortative mating in the population (Maynard Smith, 1966; Felsenstein, 1980;
Kondrashov & Kondrashov, 1999; Geritz & Kisdi, 2000). This is certainly reasonable. But, if
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the selected trait is a morphological feature that can be perceived and appreciated by
conspecifics of the opposite sex it is not less plausible, from a biological point of view, that
this trait itself might become the focus of mating preferences. We therefore suppose (as in
Dieckmann & Doebeli, 1999)  that there exist genes – to which we will refer as mating genes
– different from the one controlling the primary trait, which with the appropriate alleles
could induce in females a degree of mating preference of assortative type with respect to
the selected trait.

We assume that the mating process resulting in assortment agrees with the model
introduced by Gavrilets and Boake (1998). Preferences are expressed by females, who mate
only once, while males may participate in multiple matings. Unmated adult females
encounter males at random. An encounter of a female of trait value x with a male of trait
value y results in their mating with probability π(|x-y|), where the mating preference function
π is decreasing and π(0)=1, since here we are concerned only with positive assortment. A
female who refuses a male will try again at the next encounter, unless she had made
already a total of n=1,2,… unsuccessful encounters, in which case she must remain
unmated, an assumption that reflects the idea that the time interval available to females for
mating is limited. Thus, if p(y) represents the frequency of trait y in the population, the
probability that for a female x an encounter results in mating is

π π( ) (| |) ( )x x y p y
y

= −∑  , (8.1)

and the probability that she eventually mates with a male y is given by θ(x,y)p(y), where

θ π π( , ) ( ) (| |)x y x x yi

i

n
= −[ ] −

=

−

∑ 1
0

1
 . (8.2)

We refer to this function as mating rate. In the case of n=1 the model can also be conceived
as a model of fertility selection (Bodmer, 1965; Hadeler & Liberman, 1975), or as a model of
parental selection (Gavrilets, 1998). Thus in this case the model can be interpreted as
describing both postmating and premating reproductive isolation, whereas the case of n>1 is
for premating isolation only. Ecological situations where the encounter rate between
females and males is very high are approximated by the limit of n=∞. In this case there is
no cost to females for being choosy, because every female is sure to find a mate irrespective
of her phenotype. In fact

θ π
π

( , )
(| |)

( )
x y

x y
x

= −
   ,   so that   θ( , ) ( )x y p y

y
∑ = 1   for all   x . (9)

Hence, in this form, assortative mating does not introduce an additional factor of selection
among females. But even in this case a component of sexual selection for the primary trait is
present among males, because in general θ θ( , ) ( ) ( , ) ( )x y p x x y p x

x x
∑ ∑≠ ′  for y≠y′. Published

studies of sympatric speciation through evolution of assortative mating have not
considered the possibility of a cost to choosiness and use models of assortment where, as in
our case of n=∞, all females are certain to mate (e.g., Felsenstein, 1981; Doebeli, 1996;
Dieckmann & Doebeli, 1999; Kondrashov & Kondrashov, 1999; Geritz & Kisdi, 2000).
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The invasion dynamics of mating modifiers
Our general method of analysis of the evolution of assortative mating with

disruptive selection is the following. We start from a resident population where the
primary locus is polymorphic for the two extreme alleles (e-,e+) and all mating loci are
monomorphic, and assume it to be at a locally stable equilibrium under disruptive
selection, as specified by (3), and under some level of assortative mating characterized by a
mating preference π, as specified in (8). We then let a mutation of a mating gene occur,
introducing at a small frequency a mutant allele m′ besides the resident allele m. The rate of
recombination between the mating locus affected by the mutation and the primary locus is
r. The mutation has the effect that heterozygote females m|m′ have mating preference π′
instead of π – and mating rate θ′ instead of θ – but we assume that the difference between π′
and π is small. We then analyze the dynamics  of this population to determine whether the

mutant allele m′ is able to invade the resident population by increasing in frequency while
rare.

Table 1 shows the structure of this population. Since with assortative mating
genotypes are not in Hardy-Weinberg proportions, we have to use genotypic frequencies
rather than gametic frequencies to represent the composition of the population. The total
frequency of adult mutant heterozygotes, u1+u21+u22+u3=u, is small and the adult genotypic
frequencies of residents are only slightly different from the equilibrium frequencies,
(p1,p2,p3), that they had before mutation occurred, so that the perturbations v1, v2 and v3 are
small. Matings among heterozygote mutants are ignored because their frequency is o(u).
Therefore the homozygote mutants, which are produced by these matings, are also ignored.
It follows that v1+v2+v3=-u+o(u) because the sum of all genotypic frequencies must be one.
In the main body of the table we report the frequencies of matings among mutants and
residents, neglecting o(u) terms. The mutation affects only the mating behaviour of females.
Hence, in each of these matings, the appropriate mating rate is θ when the female is a
resident, and θ′ when she is a mutant.

The equilibrium genotypic frequencies among the adults of the resident population,
(p1,p2,p3), are determined as follows. Adult females mate and generate the newborn of next
generation. If (q1,q2,q3) denote the genotypic frequencies among these – before the
occurrence of viability selection – then

Mq p p p p1 11 1
2 1

2 12 21 1 2
1
4 22 2

2= + +( ) +θ θ θ θ   , (10.1)

Mq p p p p p p p2
1
2 12 21 1 2 13 31 1 3

1
2 22 2

2 1
2 23 32 2 3= +( ) + +( ) + + +( )θ θ θ θ θ θ θ   , (10.2)

Mq p p p p3 33 3
2 1

2 23 32 2 3
1
4 22 2

2= + +( ) +θ θ θ θ   , (10.3)

M p pij i j
ij

= ∑θ   . (10.4)

M is the normalization factor needed to ensure that q1+q2+q3=1. It is equal to one only if all
females are certain to mate, which occurs only when n=∞ (see Eq.s 8, 9). The population of
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newborn with this composition now undergoes frequency dependent viability selection
according to (3). Hence the adult genotypic frequencies, which at equilibrium must be
identical to those of the previous generation, are given by

Wp W qi i i=   ,  i=1,2,3  ,   W W qi i
i

= ∑ (10.5)

where Wi is the fitness of the i-th genotype and W then is the mean fitness. Hence

W q q q1 2 3 31 2 2= + +( ) +α β   , (10.6)

W q q2 1 31= + +( )β   , (10.7)

W q q q3 2 1 11 2 2= + +( ) +α β   , (10.8)

W q q q q q= + + + +( )[ ]1 4 1 3 1 3 2( )α β   . (10.9)

We know that with random mating (θij=1 for all i,j) the unique polymorphic solution of (10)

is p1=p3= 1
4 , and with complete assortment (θij=0 for all i≠j) it is obvious that the solution is

p1=p3= 1
2 . It is natural to expect that the same symmetry, p1=p3, carries over to polymorphic

solutions of (10) at intermediate levels of assortment. Such expectation is grounded in the
intrinsic symmetry of the viability selection structure (cf 10.6-8) and of the mating
preference function π. We therefore limit our consideration to solutions of (10) having the
property that p1=p3. The actual existence – and stability – of these equilibria for
intermediate assortment will be considered later. With this restriction it follows
immediately that

θ12=θ32 , θ13=θ31 , θ21=θ23 , q1=q3 , W1=W3 . (10.10)

As long as the mutant allele is rare (small u) the state of the population is adequately
described by the vector (v1,v2,v3,u1,u21,u22,u3) and the – short term – evolutionary dynamics
of the population is represented with sufficient accuracy by the recurrence equations for
this vector, approximated by neglecting o(u) terms. It is easy to verify that in the resulting
linear recurrence equations the dynamics of (u1,u21,u22,u3) is independent of (v1,v2,v3), and
that the transition matrix for (u1,u21,u22,u3)

T, taking into account (10.10) is

Q( , )

( )

( )

( )

( )

π π′ =

−

−

−

−





















W
MW

a rb r b

h r b hrb hc

hc hrb h r b

r b rb a

1

1 0

0 1

1 0

0 1

  , (11.1)

where
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a p p= + ′( ) + + ′( )1
2 11 11 1

1
4 21 12 2θ θ θ θ   ,  b p p= + ′( ) + + ′( )1

2 12 21 1
1
4 22 22 2θ θ θ θ   ,

c p p= + ′( ) + + ′( )1
2 13 13 1

1
4 21 12 2θ θ θ θ   ,  h

W
W

q
q

= = +
+ +

2

1

1

1

1 2
1 2

β
α β

  . (11.2)

Notice that the quantity 1-h is a measure of the intensity of disruptive selection.
Invasion by the mutant mating allele m′ is decided by the dominant eigenvalue,

λ(π,π′) say, of Q(π,π′). The elements of this matrix are non-negative and the matrix is

irreducible – because the elements of Q i are strictly positive for i≥2; the only exception is
when c=0, which occurs if assortment is complete and m′ has no effect on mating

preferences. Therefore, by Perron-Frobenius theorem for non-negative matrices, λ is a real,
simple and positive root of the characteristic equation, and its associated (right)
eigenvector, ξξξξ(π,π′) say, is the only (right) eigenvector of Q with positive elements

(Gantmacher, 1960). Thus, m′ invades if λ>1, it does not invade and is eliminated if λ<1. If

m′ is neutral (i.e., π=π′), not surprisingly, λ(π,π)=1 and ξξξξ(π,π)= p p p p
T

1
1
2 2

1
2 2 3, , ,( ) , as proved

by the fact that the equations

p p p p
T

1
1
2 2

1
2 2 3, , ,( ) =Q(π,π) p p p p

T
1

1
2 2

1
2 2 3, , ,( )

are necessarily satisfied, being identical to the equilibrium conditions (10.1-5); since the

elements of p p p p
T

1
1
2 2

1
2 2 3, , ,( )  are positive, 1 is the dominant eigenvalue of Q(π,π).

The eigenvalues of Q can be calculated explicitly for all π and π′ (see: Matessi, C.,
Gimelfarb, A. & Gavrilets, S. 2001. Assortment with disruptive selection. Appendices.
www.igbe.pv.cnr.it/homepages/matessi.html). In particular, the dominant eigenvalue λ is
given by

λ η= W
MW

1  , (12.1)

where η is the largest root of the quadratic equation

η2 - (a+hb)η + hb(a-c) = 0  . (12.2)

By inspecting (12), (11.2) and (10), we notice immediately that λ is independent of the rate
of recombination, r, between the mating gene and the primary locus. Hence we can state
the following general result

RESULT 2. Invasion of weak modifiers of assortative mating in a resident population at a
symmetric polymorphic equilibrium under frequency dependent disruptive selection does
not depend on the rate of recombination between modifier genes and the trait locus.



12

Inception of assortment and maintenance of complete isolation
Our first use of these mathematical results will be to investigate whether a small

degree of assortment can be successfully introduced in a random mating population and, at
the opposite end, whether a population with complete assortment is immune from invasion
by mutations that slightly decrease the strength of assortment. In the case of random
mating we already know (Result 1) that the resident population has a globally stable
polymorphic equilibrium, E0, where genotypic frequencies satisfy p1=p3 for adults and
q1=q3= 1

4  for the newborn. A symmetric equilibrium – with genotypic frequencies
q1=q3=p1=p3= 1

2 , a state that will be indicated by E∞ – obviously exists also in the case of
complete assortment. It can be proved that with no cost of mate choice, at n=∞, this
equilibrium is globally stable provided only that selection is disruptive (α,β>0). On the
other hand, for any finite n the stability of E∞ requires sufficiently strong disruptive
selection and is only local, because it can be shown that the two monomorphic equilibria,
corresponding to fixation of either alleles, e−  or e+ , are always stable.

In a random mating resident population, where obviously mating preferences are

π(0)=π(1)=π(2)=1  ,

we consider a mating gene mutation which has the effect to change these to

π′(0)=1  ,  π′(1)=1-kε  ,  π′(2)=1-Kε  ,

where k, K and ε are positive but ε is small (ε≈0). Straightforward calculations of the

dominant eigenvalue λ(π,π′) from (12), using (11.2) and (8) give the following result

λ π π ε ε( , )
( )

( )
( )′ = − + +

+
+1

1
4 1

2

2
h k hK

h
o for  n=1  ,

λ π π ε ε( , )
( )
( )

( )′ = + −
+

+1
1

8 1 2
h K
h

o for  n=2,…,∞  .

It is then clear that if the cost of assortment is very high – because by rejecting the first male
she encounters a female forfeits mating altogether – a small amount of assortment cannot
invade a random mating population, irrespective of the intensity of disruptive selection,
1-h, because λ<1 always. In all other cases, even if mate choice entails a cost (2≤n<∞), we

see that λ>1, meaning that random mating can always be invaded by weak assortment, as
long as there is some disruptive selection (h<1) in the population.

In a resident population with complete assortment, where mating preferences
therefore are

π(0)=1  ,  π(1)=0  ,  π(2)=0  ,

we consider a mutation which slightly reduces assortment, changing mating preferences to

π′(0)=1  ,  π′(1)=kε  ,  π′(2)=Kε  ,
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where, k, K and ε are positive and ε≈0. Notice that the resident population contains only
the two extreme types of individuals, of phenotype x=-1 and x=1 respectively, which
effectively constitute two fully isolated species. Computing again λ(π,π′) from (12) we find

λ π π ε ε( , ) ( )′ = + +1
4

2 2hkK
o for  n=1  ,

λ π π ε ε( , )
( )

( )
( )′ = − − −

−
+1

2 1
2 2 1

n

n
n K

o for  n=2, 3,… ,

λ π π ε ε( , )
( )

( )′ = − −
−

+1
2
4

h K
h

o for  n=∞  .

This result is entirely consistent with the previous one. If cost of mate choice is high (n=1)
complete mating isolation cannot be maintained; in fact mutations that slightly reduce
assortment can always invade because λ >1. Hence, in this case assortment is
disadvantageous at both extremes of its range. In all other cases (n>1), on the other hand,
complete assortment is protected; in fact mutations that reduce it can never invade because
λ<1. Hence, for n>1 assortment is advantageous at both extremes of its range. As a
summary, we can state the following

RESULT 3. Excepting the case of high cost of mate choice (n=1), an equilibrium random
mating population under disruptive selection – as defined in Result 1 – is invaded by small
levels of assortment, while complete reproductive isolation between the two extreme types
coexisting under this selective regime is protected against small reductions of assortment.

4. Buildup of reproductive isolation
Result 3 suggests the possibility that, in the model system we are considering,

disruptive selection might generally cause the following long term process: (1) increase of
phenotypic variance toward the maximum level allowed by random mating, s2= 1

2 , at the
symmetric polymorphism E0; (2) inception of assortative mating; (3) progressive
reinforcement of assortment through a sequence of invasions and fixations of mating gene
mutants; (4) attainment of complete assortment, resulting in full reproductive isolation
between the two extreme phenotypes which alone remain at state E∞ of the population,
where phenotypic variance is s2=1, the largest possible value for a distribution over [-1,1]. If
phases (1), (2) and (4) of this process are essentially validated by previous results, the
central and most critical phase (3) needs a number of results yet to be ascertained, namely:
(i) that a stable polymorphic equilibrium, ES, of the two extreme alleles, ( e− , e+), for the
primary trait persists with continuity from E0 to E∞ as assortment increases throughout all
intermediate levels, S, from random mating to complete isolation; (ii) that at each ES mating
gene mutants invade if and only if they increase the degree of assortment; (iii) that each ES

is an ESS with respect to mutations of the primary locus; (iv) that invasion generally does
not result in polymorphism of mating genes but in replacement of the resident allele by the
mutant. Ascertainment of these points is complicated by the difficulty of solving
analytically equilibrium equations (10). Thus several of our results will be based on
evidence from numerical experiments rather than on analytical proofs.
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Polymorphism under disruptive selection with partial assortative mating
In order to quantify degrees of assortment, from now on we will assume (Lande,

1981) that the mating preference,  π(|x-y|), of a female of trait x for a male y  is given
explictly by

π(|x-y|)=exp{-S(x-y)2}  , (13.1)

so that S∈[0,∞) measures the strength of assortment, S=0 corresponding to random mating

and S=∞ to complete isolation. As long as the only trait values in the population are (-1, 0,
1), we need to be concerned with only three values of this function and in this respect, for
convenience, we will also use the alternative notation

π(0)=1  ,  π(1)=exp{-S}=1-υ  ,  π(2)=exp{-4S}=(1-υ)4  . (13.2)

in which the strength of assortment is measured by υ∈[0,1).
Although existence and local stability of polymorphic equilibria of the primary locus

with partial assortment cannot be ascertained analytically, we can easily obtain some hint
by looking at the stability of fixations of the two alleles e−  and e+ . By the symmetries of the
model the two fixations are stable or unstable simultaneously. These symmetries also imply
that if there is an odd number of polymorphic equilibria one of these must be symmetric
(i.e., with p1=p3). Thus, if instability of fixations prevails, a likely possibility – but by no
means a certainty – is that there is a globally stable symmetric equilibrium. Conversely, if
fixations are stable a possibility is that there is an unstable symmetric equilibrium or that
the symmetric polymorphism is stable, but is "flanked" by two unstable polymorphisms. In
the latter case the domain of attraction to the symmetric equilibrium might be so small as to
devoid in practice such equilibrium of any evolutionary significance, because small random
fluctuations may easily trow a polymorphic population into the domain of attraction of
either fixation.

If we denote by pi and ′pi (i=1,2,3) the genotypic frequencies of the primary locus
among the adults of two successive generations, the recurrence equations linking these
variables are

′ =p
W
W

qi
i

i   ,  i=1,2,3  , (14)

where the genotypic frequencies of the intervening newborn stage, qi , are determined in
terms of the pi 's by Eq.s (10.1-4) and the fitnesses Wi  and W are given by Eq.s (10.6-9).
Near fixation of e− , where p2,p3≈0, with incomplete assortment these equations are
approximated by

′ = + + +p p o p2
12 21

2 21
2

( ) ( )β θ θ
  ,  ′ =p o p3 2( ) .

Thus, fixation of e−  is stable if

( )1
2

112 21+ + <β θ θ
 ,
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where the mating rates, θij, are evaluated at p1=1. Computing these rates explictly according
to (8) we conclude that fixation of e− , and simultaneously that of e+ , is stable if

( )1
2

2
1+ − <β υ

  , (15)

when there is no cost of mate choice (n=∞). Thus, stability of fixations is facilitated by high

levels of assortment (high υ) and low levels of selection (low β). In fact, without selection
fixations would be stable with any positive amount of assortment. But, if selection is
sufficiently strong (β>1) fixations never become stable, irrespective of the strength of
assortment. When there is some cost of mate choice, stability of fixations is more easily
achieved, and it always occurs if assortment is sufficiently strong, irrespective of the
strength of selection.

We have made a numerical survey of the stable equilibria of (14), in the case of no
cost of mate choice, by iterations of these recurrence equations for a large number of
parameter values. We found that the symmetric equilibrium is always present and that it is
globally stable whenever the monomorphic equilibria are unstable. Moreover the local
stability of such equilibrium does not necessarily vanish when the monomorphic equilibria
are stable, that is when (15.3) is satisfied. Recalling (13.2), this condition may be rewritten in
terms of S as

S SL> = +
−







ln
1
1

β
β

  . (16)

The way the size of the domain of attraction to the symmetric equilibrium depends on
selection (α,β) and intensity of assortment, S, when (16) is true is illustrated by Table 2. The
table shows examples of results obtained from numerical iterations of (14) beginning from a
population with a given frequency, p<0.5, of allele e+  ( e−) and genotypic frequencies in
Hardy-Weinberg proportions. All such iterations converged either to fixation of e−  ( e+) or
to the symmetric equilibrium, depending on the value of p. The relative size of the domain
of attraction to the symmetric equilibrium can thus be estimated by 1-2pmax, where pmax is
the largest value of p such that convergence is to fixation of e−  ( e+). The symmetric
equilibrium cannot be reached from any Hardy-Weinberg population and is probably
unstable when pmax=0.5. The fixations are unstable when pmax=0, which, by (16), occurs
when S≤SL. Table 2 reports values of pmax for selected values of {α,β,S}. For any given {α,β},
pmax is not monotone with respect to S∈[SL,∞). In fact, as S increases, pmax first increases up
to a maximum and then decreases, apparently going to zero as S goes to infinity. The
maximum of pmax decreases as α or β increase, and does not reach 0.5 unless both α and β
are small. In summary, from this numerical analysis it emerges that a stable symmetric
equilibrium with a substantial domain of attraction always exists, unless selection is weak
and assortment is neither too weak nor too strong.

Progress of assortment
We now analyze the conditions under which a resident population at a stable

symmetric equilibrium ES due to disruptive selection and assortative mating of strength S
can be invaded by a mating gene mutant changing the strength of assortment to S′. As



16

demonstrated in § 3, the basic tool for this analysis is the eigenvalue, λ, defined by

Eq.s 11-12. Given the assumption of (13), this eigenvalue is a function of both S and S′ or,
equivalently, of υ=1-exp{-S} and υ′=1-exp{-S′}, so that we may write λ=λ(υ,υ′). Since we are

concerned only with mutations of weak effect, such that υ′≈υ, and recalling that λ(υ,υ)=1,
we may approximate λ by

λ υ υ λ υ υ
υ

υ υ υ υ
υ υ

( , )
( , )

( ) ( )′ = + ∂ ′
∂ ′

′ − + ′ −
′=

1 o   .

This means that the criterion for invasion by (weak) mutations that increase the strength of
assortment is

∂ ′
∂ ′

>
′=

λ υ υ
υ υ υ

( , )
0  , (17.1)

while the reversed inequality is the criterion for invasion by mutations that reduce the
strength of assortment. Considering that, by (12.1), the relation between λ and the largest
root, η , of the quadratic equation (12.2) is of the form λ= Cη , where the factor C is

independent of υ′ and is positive, we see that (17.1) reduces to the equivalent condition

∂ ′
∂ ′

>
′=

η υ υ
υ υ υ

( , )
0  . (17.2)

We shall limit our analysis to the type of assortative mating that has no cost of mate
choice (n=∞; Eq. 9) which is mathematically simpler, and is the most favourable to the
evolution of assortment as indicated by previous results. It can be demonstrated that in this
case condition (17.2) reduces to the following equivalent criterion

∆(υ) > 1  , (18.1)

where

∆( )
( )

( )( )
( )υ α β

α β
θ θ= + + −

+ + −
+ −[ ]1 1

1 1
12

2

1
2 2 21 12

q
q

p   , (18.2)

θ θ υ
υ

υ
υ υ

21 12
2 2 2

4
2

1
1 1

2 1

2 1 1 1 1
− = −

+ − −
− −

− + + −[ ] −p p p p( )( )
( )

( ) ( ) ( )
  , (18.3)

and the equilibrium frequencies, q2 and p2, of newborn and adult heterozygotes e e− +| ,
respectively, in the resident population are, by (10), solutions of the following pair of
equations
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q p
p p p

p p
2

1
2 2

2 2
4

2
2

2
4

2

1 1 1 1

2 1 1 1 1
= + − − + − −

− + + −[ ] −
( )( ) ( ) ( )

( ) ( ) ( )

υ υ
υ υ

  , (18.4)

p
q

q
q2

2

2
2

1 1
1 1

= + −
+ + −

β
α β

( )
( )( )

  , (18.5)

(see: Matessi, C., Gimelfarb, A. & Gavrilets, S. 2001. Assortment with disruptive selection.
Appendices. www.igbe.pv.cnr.it/homepages/matessi.html). A complete analysis of this
invasion criterion would need the explicit general solution of equilibrium equations
(18.4-5), which is not feasible because it amounts to finding the roots of a fourth degree
algebraic equation. However, by using standard perturbation techniques (e.g., Nayfeh,
1981), we can determine accurate conditions of invasion in the limiting cases of (i) strong
assortment (υ≈1), (ii) weak assortment (υ≈0) and (iii) weak assortment vis-à-vis weak
selection (υ,α,β≈0).

Consider first the case of strong assortment, where 1-υ≈0. Our approach will be to

determine ∆(υ) as an expansion in powers of (1-υ),

∆( ) ( ) ( )υ υ υ= + − + − +c c c0 1 2
21 1 L ,

of which it is sufficient to retain only terms of lower power, as long as 1-υ is small. To find
the sequence of coefficients, (c0, c1, …), of this expansion we first have to solve (18.4-5) for
(p2,q2), again in the form of power expansions in (1-υ). Let

p p a a a2 0 1 2
21 1= = + − + − +* ( ) ( ) ( )υ υ υ L  ,

q q b b b2 0 1 2
21 1= = + − + − +* ( ) ( ) ( )υ υ υ L  ,

be the solution. Then, if we substitute (p*,q*) for (p2,q2) in (18.4-5) we obtain a pair of
identities, each of which equates two power series in (1-υ), which must be satisfied for all υ.

This means that the coefficients of equal powers of (1-υ) on the two sides of each identity
must be equal. This condition then provides a pair of equations for each power of (1-υ) that
can be solved to obtain the pairs of coefficients (a0,b0), (a1,b1), etc. Following this procedure
we find that a0=b0=…=a3=b3=0 and

p * ( )
( )

( )υ β
α β

υ= +
+ +

− +2 1
1 2

1 4 L   ,   q * ( )
( )

( )υ α β
α β

υ= + +
+ +

− +2 1
1 2

1 4 L  .

Substituting this solution in (18.2) and expressing the right hand side of this equation as a
power series in (1-υ) we finally find

∆( ) ( )υ α
α β

υ= +
+ +

− +1
1

1 4 L  . (19)
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Comparing this result to the criterion (18.1), we immediately conclude that, irrespective of
the strength of selection on the primary trait, provided that it is disruptive (α,β>0), only
mutants that increase the strength of assortment can invade a resident population in which
assortment is already sufficiently strong. In the case of weak assortment (υ≈0), proceeding
in a similar way to determine ∆(υ) as a power series in υ, we find

∆( )
( )( )

( )
( )( )

( )
υ α

α β
β α β

α β
α α β α β

α β
υ= +

+ +
− + + +

+ +
+ + + + +

+ +








 +1

2
2 2 2

4 2
1 2 2

22

2

4 L  . (20)

Hence, for any fixed (α,β) provided that α,β>0, ∆(υ)>1 if assortment is weak enough, so that
only mutants that increase the amount of assortment can invade.

These two results extend to the respective neighborhoods the invasion properties
that in § 3 were demonstrated to hold at the two extremes of assortment level, υ=1 and υ=0
(Result 3), suggesting that under disruptive selection assortment always tends to increase
in strength. This is not true however, because in (20) we can observe that if α is let tend to

zero for any fixed υ, then ∆(υ) becomes less than one. Indeed, if we expand ∆(υ), as given
by (20), in power series also with respect to α and β, retaining only terms linear in α, β and

υ, it results that for weak selection and weak assortment

∆( , , )υ α β α υ= + − +1 1
2

1
4 L  , (21)

showing that, for small α, β and υ, ∆ is greater than one only if υ<2α, approximately. This
equation, together with (19) proves the following

RESULT 4. At least for weak selection there are two thresholds (singularities) in the
evolution of assortment, υ0(α,β) and υ1(α,β), where ∆(υ0)=∆(υ1)=1, and such that all levels of
assortment, υ, in the ranges 0≤υ<υ0 and υ1<υ<1 are invaded only by mutants that increase

assortment. Of the levels of assortment in the remaining middle range, υ0<υ<υ1, at least
those that are close to υ0 are invaded only by mutants that decrease assortment. For small α
and β, υ0(α,β)≈2α.

This result is obviously quite important because it implies that, at least when
disruptive selection is weak, evolution of assortative mating through mutations of small
effect cannot carry a population all the way from random mating to sympatric speciation.
Some degree of assortment can indeed accumulate in all cases, but for weak selection it
cannot progress beyond the rather low level υ0. It is therefore essential to ascertain whether
a sufficiently high level of selection removes such limitation, allowing sympatric speciation
to evolve. There is also some interest in refining the above result with respect to the
behaviour of ∆(υ) in the middle range (υ0,υ1), to verify in particular whether assortment
tends to diminish (i.e., ∆(υ)<1) in the whole interval, or whether more complex behaviors

(e.g., other roots of ∆(υ)=1) occur. We have obtained partial answers to these questions by
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solving numerically for many values of (α,β) the equation ∆(υ)=1 in the interval 0<υ<1,
which of course requires simultaneously solving equations (18.4-5). Some examples of the
results are reported in Table 3 which, for selected values of (α,β), shows the values of

S=-ln(1-υ) that solve ∆ ∆( )υ = −( ) =−1 1e S . As illustrated here, if selection is sufficiently

weak (β or α/β small) there are exactly two thresholds, so that assortment tends to decrease

anywhere in the middle range (υ0,υ1). As selection is made stronger this interval becomes
narrower because υ0 increases and υ1 decreases. When β or α/β are large enough the two
thresholds merge and disappear. Hence, for sufficiently strong selection, increasing
assortment is always favoured irrespective of the current degree of assortative mating in
the population.

Comparing these numerical results about the roots of ∆(υ)=1 with those about the
stability of the symmetric equilibrium discussed above (cf. Table 2) it can be seen that the
symmetric equilibrium is always stable at the parameter points, {α,β,υ}, where invasion is

by mutants that increase assortment (i.e., ∆(υ)>1). For example, for α/β=β=0.1 we see from
Table 3 that invading mutants increase assortment whenever 0<S<0.02 or S>0.855, and from
Table 2 we see that in the first of these ranges the symmetric equilibrium is globally stable
(both fixations are unstable), while in the second it is locally stable with a reasonably large
domain of attraction (pmax>0.37).

We made some numerical test to verify whether the symmetric equilibrium, besides
being stable, is also an ESS with respect to primary trait mutants at points, {α,β,υ}, of the

parameter space where ∆(υ)>1. The tests were made by iterating the recurrence equations
for the genotypic frequencies of a population at a symmetric equilibrium which had been
contaminated by a small frequency of a mutant allele of the primary locus with effect
chosen at random in −( )1

2
1
2, . For each given point of the parameter space a thousand

random mutants were checked. The results suggest that the symmetric equilibrium is
indeed a polymorphic ESS of the primary trait wherever assortment tends to increase. In
fact in all cases where ∆(υ)>1 the mutant allele disappeared from the population and the
original symmetric equilibrium was restored. Interestingly, we also found cases where the
symmetric equilibrium did not have the ESS property, and this occurred when ∆(υ)<1, that
is when a decrease of assortment was favoured.

Fixation of invading mutants of assortment
Let υ, υ' and υ" be the levels of assortment associated respectively to genotypes

m|m, m|m' and m'|m' of a mating gene of which m is the resident allele and m' is a
mutant that has invaded, and suppose that ∆(υ)>1. Under the assumption that mutations
have small effect both υ' and υ" are very close to υ, and υ'>υ because m' was able to invade.
If partial dominance prevails in the expression of mating genes, the heterozygote
phenotype, υ', is between the phenotypes of the two homozygotes, so that υ<υ'<υ". Hence,
if m' were the resident allele m would not be able to invade it if ∆(υ")>1, while such

invasion would occur if ∆(υ")<1. In other words, in the short term dynamics of the two
alleles m and m', fixation of m is unstable and fixation of m' is stable in the first case, while
both fixations are unstable in the second. It is then certain that for ∆(υ")<1 a polymorphism
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of resident and mutant allele is maintained. On the other hand it is plausible, although by
no means certain in such a complex selection system, that for ∆(υ")>1 there is no
polymorphism of m and m', and that invasion by m' is followed by its fixation.

Based on these considerations we could expect that, with partial dominance of
mating genes, every invasion is followed by fixation of the mutant allele at all assortment
levels υ∈[0,1) when the disruptive selection parameters, {α,β}, are so large that ∆(υ)>1
anywhere in [0,1) (see Table 3). When the strength of selection is small enough that the
threshold υ0(α,β) exists, fixation of invading alleles can be expected to occur for assortment

levels υ∈[0,υ0) only if υ is far enough from υ0 that υ"<υ0. But when υ is in the vicinity of υ0

and a mutation appears such that υ<υ0<υ", a polymorphism of resident and mutant allele is
established.

These conjectures have been completely confirmed in a large number of numerical
tests that we performed by iterations of the exact recurrence equations of the genotypic
frequencies for the two-locus system with the two alleles e e− +( ),  at the primary locus and a
pair of alleles, (m,m'), at a mating locus. The mutant allele m' was introduced at the
frequency of 10-5 in a population that had reached the one-locus symmetric equilibrium
under assortative mating of level S=-ln(1-υ) due to the resident homozygotes, m|m. The
levels of assortment due to mutant heterozygotes, m'|m, and homozygotes, m'|m', were
measured by S'=-ln(1-υ') and S"=-ln(1-υ") respectively, and S' was chosen in agreement with
the assumption of partial dominance and such as to ensure that m' would invade m. After
introduction of the mutation, iterations were ended when either the distance between
genotypic frequencies in two consecutive generations had become less than 10-14 –
indicating attainment of an equilibrium – or generation number 300,000 had been reached.
If at the end of iterations the frequency of the mutant allele m' was larger than 0.99 we
assumed that the mutation would go to fixation. In some cases evolution could have been
so slow that at the end of iterations the frequency of m' was still below the threshold of
0.99, although its fixation would occur eventually. To control for this possibility, so as to
distinguish it from genuine polymorphism, we made a second series of iterations starting at
the same one-locus equilibrium as in the first series but with the initial frequency of m' set
equal to 0.99. When these iterations ended by the same criterion as before, it was assumed
that a stable polymorphism of resident and mutant allele existed if the frequency of m' was
now less than its initial frequency of 0.99. Otherwise it was assumed that the mutation
would go to fixation.

The numerical tests were made for each of the 48 combinations of four values of α/β
(0.1, 0.2, 0.5, 1), six values of β (0.1, 0.5, 1, 2, 4, 5) and two values (0.05, 0.5) of the rate of

recombination, r, between the primary locus and the mating locus. For each pair {α,β} such
that ∆(υ)>1 everywhere in [0,1), five sets of mating phenotypes, {S,S',S"}, were tested with
the two recombination values. Each set was chosen at random subject to the following
constraints:

0< S <1  ,  S + 0.01< S" < S + 0.1  ,  S + 0.01 < S' < S"  .

These were the tests of type I. For each pair {α,β} where the threshold S0= − −[ ]ln ( , )1 0υ α β
exists, five sets of mating phenotypes for tests of type II and five for tests of type III were
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used with the two values of r. These ten sets were generated at random subject to the
following constraints:

S0 - 0.02 < S < S0 - 0.01  ,  S + 0.001 < S' < S"  ,

for both types of tests and

S + 0.001 < S" < S0 - 0.001  ,   for type II  ,

S0 + 0.001 < S" < S0 + 0.02  ,   for type III  .

In total 150 tests of type I and 90 tests each of type II and III were made. In agreement with
our conjecture all tests of type I and II ended with fixation of the mutant allele, while all
tests of type III ended with polymorphism of the resident and mutant alleles.

Long term evolution of assortative mating
We have thus provided analytical proofs or numerical evidence in favour of all the

elements required to validate the third phase of the long term evolutionary process
outlined at the beginning of this section, uncovering meanwhile the important qualification
that unlimited progress of assortative mating to sympatric speciation can only occur if
disruptive selection is strong enough. To summarize the findings of this section we can
therefore state the following

RESULT 5 (based in part on numerical evidence). If the strength of disruptive selection – as
measured by {α,β} – is sufficiently high, and if mate choice can occur without cost,
assortative mating for the selected trait emerges in a random mating population and
becomes progressively stronger, through a sequence of invasions and fixations of
mutations of small effect, until complete reproductive isolation between the two extreme
morphs in the population is achieved, effectively concluding a process of sympatric
speciation. In the course of this process, with respect to the primary trait the population
remains in a state of symmetric polymorphic equilibrium, ES, which changes with
continuity, from the initial state E0 to the final state E∞, as the strength of assortment, S,
increases from zero to infinity. In particular the phenotypic variance increases
monotonically from 1

2  to 1. Every equilibrium ES is stable in the short term dynamics and
cannot be invaded by any allele of the primary locus different from the resident alleles,
e e− +( ), . On the other hand, if the strength of disruptive selection is too small, the process

just described does not proceed to complete isolation because there exists a threshold
S0(α,β) such that, when the increasing strength of assortment S reaches its vicinity, a stable
polymorphism of assortment levels, both smaller and larger than S0, arises in the
population.

  How evolution will further proceed in the long term, once the vicinity of S0 has
been reached, depends on the nature of this singular point, which is determined by the
second derivative (with respect to υ′) of the dominant eigenvalue, λ(υ0,υ′), of the invasion

dynamics for a resident population with assortment level S0=-ln(1-υ0). This is difficult to
analyze because υ0 cannot be computed exactly. However, numerical calculations of λ(υ,υ′),
for υ very close to υ0 and for a wide range of values of υ′, indicate that λ(υ0,υ′)=1 for all υ′.
In this case then no mutant can actually invade S0, but some might persist in the population
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as rare neutral variants. This means that S0 is a "weak" ESS, an evolutionary singularity of a
kind that is well known in several adaptation problems. For example, the 1:1 sex allocation
ratio of classical sex-ratio theory is an ESS of this type (e.g., Charnov, 1982; Karlin &
Lessard, 1986). We may then conclude that if disruptive selection is not strong enough,
evolution of assortment through mutations of weak effect, starting from random mating
cannot progress to complete isolation and stops at the moderate ESS level S0.

5. Discussion
Our primary intent in this article was to examine the long term consequences, in a

sexually reproducing species, of the regime of disruptive selection on a continuous trait
characterized by that particular type of evolutionary singularity – named PEAST
(Christiansen, 1991) or "evolutionary branching point" (Geritz et al., 1998) – which, being
continuously stable (convergence stable), is an evolutionary attractor for monomorphic
populations but at the same time can be invaded by any mutation. In this inquiry we
addressed the case where the genetic control of the selected trait is additive. The non
additive case, which behaves very differently, will be examined in another paper (Matessi
& Gimelfarb, 2002, in preparation). To permit a mathematical analysis, we simplified the
problem by the assumption that variation of the trait is determined by a single locus and is
confined to the finite interval [-1,1]. Moreover, we assumed a simple frequency dependent
selection model that approximates, in the vicinity of the singularity at x°=0, the many
diverse and complex systems of ecological interactions that give rise to a PEAST
singularity, including scramble competition (Christiansen & Loeschcke, 1980; Christiansen,
1991; Doebeli, 1996; Dieckmann & Doebeli, 1999) and habitat heterogeneity (Geritz et
al., 1998; Kisdi & Geritz, 1999).

The first and most characteristic consequence of this selection regime is not only the
emergence of genetic polymorphism, described in Christiansen and Loeschcke (1980) and
in Christiansen (1991), but also, and more specifically, the likely attainment of a
polymorphic long term equilibrium (polymorphic ESS) as demonstrated in Kisdi and
Geritz (1999) and in this article. Thus, we could say that MEAST – or continuously stable
ESS – and PEAST type singularities are pointers respectively to monomorphic and
polymorphic long term equilibria. There is however a major difference between the two
cases. While in the case of a MEAST the equilibrium and its stability are direct
consequences of the local properties of selection at the singularity, in the case of PEAST the
very existence of a polymorphic long term equilibrium depends critically on the global
properties of the fitness landscape. For example, in our model the equilibrium is unique
while in the model of Kisdi and Geritz (1999) there may be up to three equilibria although
both models entail a single PEAST. The examples of extinction of evolutionary branches
found by Geritz et al. (1999) in a model with clonal reproduction indicate that with sexual
reproduction there could be cases where the buildup of polymorphism around a PEAST is
only transient and is followed, for example, by attainment of a monomorphic equilibrium
at a MEAST.

The presence of polymorphism renders the mathematical analysis of long term
evolution near a PEAST rather difficult, even with single locus genetics as assumed in this
article and in Kisdi and Geritz (1999). The difficulties would be forbidding with multilocus
genetics. From the point of view of the method of analysis of polymorphic ESS there is an
important difference between our approach and that of Kisdi and Geritz (1999). We assume
that, irrespective of the state of the population, a mutation of the primary locus can
produce any one of the alleles that are possible for this locus. Hence, at any time the effect
of a mutant allele can be any value in the interval −[ ]1

2
1
2,  because this is the set of all
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possible allelic effects in our model. It follows that for us a long term equilibrium (ESS) is a
population state that cannot be invaded by any of the alleles with effect in −[ ]1

2
1
2, . Kisdi

and Geritz (1999) make a very different assumption with respect to which mutations are
possible at any given moment. In fact they assume that the effect of a mutant allele is
always close to the effect of the resident allele from which the mutation originally arose.
Thus if E, say, is the set of effects of all possible alleles of the primary locus and if, for
example, e1 and e2 are the effects of the resident alleles at a certain moment, then the effect
of any mutant that could appear in the population at this moment cannot be an arbitrary
element of E but only a value sufficiently close to either e1 or e2. It follows that, according to
Kisdi and Geritz, a polymorphism with the pair of alleles (e1,e2) is an ESS if and only if it
cannot be invaded by any allele e that is close either to e1 or to e2. This difference means that
what for Kisdi and Geritz is a necessary and sufficient condition of ESS,  from our point of
view is just a necessary condition. From a biological point of view, and if we were to
measure distances between alleles, for example, by the number of different nucleotides
between the corresponding DNA sequences, the assumption of Kisdi and Geritz would be
entirely justified, because generally more than one mutation event separates two
homologous sequences that differ at more than one nucleotide site. Unfortunately, it is not
generally true that distances in this molecular metric correlate with the distances at the
level of expressed phenotype.

At the unique polymorphic ESS that exists in our model a half of the population
consists of heterozygotes which, because of their intermediate phenotype, x=0, have the
lowest fitness. The homozygotes that make up for the rest are evenly distributed among the
two extreme and most fit phenotypic values, x=-1 and x=1. It is then natural to expect that
in such a situation assortative mating for the selected trait will be advantageous and that
progressive reinforcement of this mating pattern by natural selection will result in complete
reproductive isolation between the two extreme types with disappearance of the
intermediate heterozygotes. This of course is the classical scenario of sympatric speciation
about which a rich theoretical literature has accumulated, probably beginning with the
paper by Maynard Smith (1966). A large majority of these studies belong to the class of the
"two-allele" models as defined by Felsenstein (1981). Their common feature is that
evolution of assortment for the selected trait is conceived as resulting from the
establishment of a strong correlation – due to linkage disequilibrium – between the selected
trait and an initially independent trait for which a given level of assortative mating already
existed in the population for some unspecified reason. The general result of this approach is
that assortment for the selected trait is established only if the strength of disruptive
selection is above a certain treshold, that decreases as the preexisting level of assortment for
the other trait increases (e.g., Maynard Smith, 1966; Udovic, 1980; Felsenstein, 1981;
Kondrashov & Kondrashov, 1999; Dieckmann & Doebeli, 1999; Geritz & Kisdi, 2000).
According to Felsenstein (1981), in this class of models, speciation through evolution of
assortment is more difficult to achieve than in the other class identified by him, that of the
"one-allele" models, to which our model also belongs. Evolution of assortment in this case is
conceived as resulting from the accumulation of modifiers of mating behavior that induce
and reinforce direct assortment for the selected trait (e.g., Maynard Smith, 1966; Doebeli,
1996; Dieckmann & Doebeli, 1999). Probably the reason why models of the first type have
been preferred is that they were considered biologically more plausible (Maynard Smith,
1966). This opinion may be correct in cases where the primary trait subject to disruptive
selection measures biochemical or physiological activities which cannot be perceived by
potential mates. But there is no compelling reason to question the possibility of direct
assortative mating for the primary trait if it reflects aspects of external morphology which
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at the same time are directly involved in ecological interactions, as for example body size,
or bill size in birds, which often are strongly related to the trophic niche (Hutchinson, 1959;
MacArthur, 1972; Cody, 1974).

In theoretical studies of sympatric speciation through assortative mating it is
generally assumed that mate choice occurs without cost. However, mating preferences
could significantly prolong the time required to find a mate, particularly if the preferred
type is rare. Thus there may be cases in which, due to, for example, low population density
or short mating season, the probability of mating and reproducing is substantially reduced
by a strong preference or by the rarity of the preferred mate. The assortative mating model
of Gavrilets and Boake (1998) that we adopted accounts for the possibility of such effects
through the parameter n, representing the maximum number of males that a female is
allowed to encounter while searching for a mate. Although we analyzed progress of
assortment only in the case of no cost (n=∞), other results that we obtained indicate that
evolution of assortment is more difficult if mate choice has a cost. Thus, when n=1
assortment cannot invade random mating, and complete assortment is invaded by a
reduction of its intensity. Hence, we do not expect any evolution of assortative mating in
cases where females can mate only by accepting the first male they encounter. Moreover,
our stability analysis of the equilibria of the primary trait under assortment indicates that
stable polymorphism – obviouly a prerequisite for any progress of assortment – is less
likely to occur if n<∞.

When there is no cost of mate choice (n=∞), or even if such cost is moderate (1<n<∞),
our model agrees in some respects with the expectations implied by Felsenstein's
classification. First of all, the rate of recombination between the primary locus and the
mating modifiers has no influence on the evolution of assortment. Second, there is no
threshold amount of selection necessary for inception of assortative mating. Provided that
selection is disruptive, modifiers inducing some assortment for the selected trait can always
invade a random mating population. If n=∞, the same is true when assortment is already
strong because, irrespective of the strength of disruptive selection, mutants that further
increase the amount of assortment can always invade, and complete isolation cannot be
destroyed by invasion of modifiers that reduce the amount of assortment. Thus, if mate
choice is not costly, complete isolation is a continuously stable ESS of mating behaviour at
any level of disruptive selection. If cost of mate choice is moderate, complete isolation is
still an ESS whenever coexistence of the two extreme types is stable, but such stability
occurs only if selection is sufficiently strong.

The concordance with the expected properties of Felsenstein's "one-allele" models
however vanishes, even in the case n=∞, with regard to the crucial question of whether
sympatric speciation (complete assortment) can evolve starting from a random mating
population. In this respect, our result rather resembles that of Felsenstein's "two-allele"
models because we find that an increase of the strength of assortment is favoured at all
assortment levels, from random mating to complete isolation, only if the disruptive
selection parameters, α and β , are large enough. If α and β are small, evolution of
assortment changes direction at two thresholds, S0 and S1, of the strength of assortment
S∈[0,∞): assortment increases when it is either very weak, 0≤S<S0, or very strong, S>S1, but
it decreases when its strength is intermediate, S0<S<S1. Thus, starting from random mating
(S=0), assortment does indeed increase but it cannot progress, through mutations of small
effect, beyond the rather modest ESS level S0=S0(α,β) (see Tab. 3), where its evolution comes
to an end.

An apparently similar behavior is briefly reported by Doebeli (1996), among the
results of a numerical study of sympatric speciation due to direct assortative mating for a
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continuous trait subject to disruptive selection, caused by scramble competition. The
genetics of the trait is simulated by an hypergeometric model of segregation for twenty
additive, haploid and unlinked loci. The rather complex selection model has many
parameters, none of which is indicated as related to strength of selection. However, the
parameter whose qualitative effects on the evolution of assortative mating are described is
the variance of the competition function, wich is Gaussian as in the disruptive selection
model used by Christiansen and Loeschcke (1980). Hence, from the equivalence of the latter
with our model, we might infer that such parameter is inversely related to our selection
parameters, {α,β}. Doebeli finds that if the variance of the competition function is high
(weak selection), starting from random mating the degree of assortment evolves to a
relatively moderate equilibrium value, but it evolves to a much higher level if initially
assortment was already intense. On the other hand, if competition is sufficiently loose (low
variance, strong selection) the lower equilibrium level disappears so that very strong
assortment can evolve starting from random mating. It seems clear that these numerical
results of Doebeli reflect the two thresholds, S0 and S1, of which we proved here the
existence with weak selection and the disappearance with strong selection.

In a recent individual-based simulation study of sympatric speciation due to
disruptive selection, Dieckmann and Doebeli (1999) do not report any evidence of the
threshold effect of selection intensity on the evolution of assortative mating, in the case of
direct assortment for the selected trait. This is surprising because their model of mating is
the same as that used by us (with n=∞) and by Doebeli (1996), and their representation of
disruptive selection due to scramble competition is even closer to ours than that of Doebeli
(1996), because it consists of a Lotka-Volterra competition model with Gaussian resource
spectrum and Gaussian competition function, exactly as in Christiansen and Loeschcke
(1980). In fact it appears that in these simulations almost complete isolation between two
extreme types is achieved provided only that the variance of the resource spectrum is
greater than the variance of the competition function. From the equivalence of the model of
Christiansen and Loeschcke with ours we can see that this is simply the condition that α>0,
or that selection  be disruptive. On the other hand, in accordance with the general
behaviour of the "two-allele" models of Felsenstein's classification, in the simulations
dealing with the case of assortment directed to a neutral marker trait, reproductive
isolation is attained only if the variance of the competition function is less than some low
threshold, which, in the terms of our model, is equivalent to the requirement that both α
and β  be sufficiently large. It is likely that the apparent discrepancy between the
simulations of Dieckmann and Doebeli (1999) and our result on the existence of the two
thresholds, S0 and S1, under weak selection can be explained by the fact that our analysis, as
well as the numerical study of Doebeli (1996), assumes mutations of mating loci with a very
small effect and considers only invasions by one mutation at the time. But these
assumptions do not really apply to the simulations of Dieckmann and Doebeli (1999)
because there the genetic assumptions were such that, starting from random mating, only
five mutation events on different loci were sufficient to produce an haplotype that, in
homozygote condition, would code for essentially complete assortment, while mutation
rate, population size and number of loci were such that about 10 mutations occurred each
generation, on average. It seems quite possible that under these conditions, simply by the
pressure of mutation and genetic drift, a population could in a few generations, so to speak,
jump over the region [S0,S1], where an increase of assortment is not permitted, thereby
landing in the basin of attraction toward complete assortment.
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Table 1. Structure of the population after mutation of a mating gene

RESIDENTS

genotype → e m
e m

−

−

e m
e m

−

+

e m
e m

+

+

↓ primary
trait

→ -1 0 1

↓ frequency p1+v1 p2+v2 p3+v3

e m
e m

−

−

′ -1 u1 ( )θ θ11 11 1 1+ ′ p u ( )θ θ21 12 2 1+ ′ p u ( )θ θ31 13 3 1+ ′ p u

e m
e m

+

−

′ 0 u21 ( )θ θ12 21 1 21+ ′ p u ( )θ θ22 22 2 21+ ′ p u ( )θ θ32 23 3 21+ ′ p u

e m
e m

−

+

′ 0 u22 ( )θ θ12 21 1 22+ ′ p u ( )θ θ22 22 2 22+ ′ p u ( )θ θ32 23 3 22+ ′ p u

M
U

T
A

N
T

S

e m
e m

+

+

′ 1 u3 ( )θ θ13 31 1 3+ ′ p u ( )θ θ23 32 2 3+ ′ p u ( )θ θ33 33 3 3+ ′ p u

NOTE: genotypic frequencies refer to the adults, after selection. θ11=θ(−1,−1), θ12=θ(−1,0),

θ13=θ(−1, 1), … , ′ = ′ − −θ θ11 1 1( , ) , … . Each θij and θ′ij is computed, according to (8), with
respect to a population of composition (p1,p2,p3).
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Table 2. Domain of attraction to fixation of e−  or e+

β=0.1 β=0.3
pmax pmax

S α/β=0.1 α/β=0.9 S α/β=0.1 α/β=0.9

0.201 0.0000 0.0000 0.619 0.0000 0.0000

0.202 0.0069 0.0061 0.620 0.0002 0.0002

0.21 0.04 0.03 0.65 0.008 0.006

0.22 0.09 0.07 0.66 0.010 0.007

0.25 0.24 0.16 0.68 0.014 0.010

0.28 0.50 0.25 0.70 0.017 0.013

0.30 0.50 0.28 0.80 0.028 0.019

0.40 0.50 0.41 0.90 0.031 0.020

0.50 0.50 0.35 1.00 0.030 0.018

0.80 0.37 0.17 1.50 0.016 0.007

1.00 0.17 0.10 2.00 0.012 0.002

NOTE: for the indicated values of the selection parameters, β and α/β, and of the strength
of assortment, S, the table shows the largest value, pmax, of the frequency of allele e+  ( e−)
such that a population, starting from an Hardy-Weinberg composition with this allelic
frequency, converges to fixation of e−  ( e+). Whenever pmax<0.5, a population with initial
frequency, p, such that pmax<p≤0.5 converges to the symmetric polymorphic equilibrium.
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Table 3. Thresholds of assortment where evolution changes direction

α/β

β 0.1 0.3 0.5 0.7 0.9

0.1 0.020
0.855

0.060
0.805

0.105
0.750

0.155
0.690

0.220
0.620

0.3 0.055
0.815

0.190
0.660

- - -

0.5 0.090
0.780

- - - -

1.0 0.150
0.720

- - - -

2.0 0.250
0.635

- - - -

4.0 0.410
0.495

- - - -

4.2 - - - - -

NOTE: for given pairs of β and α/β the table shows the roots of ∆ 1 1−( ) =−e S  for S>0.

Dashes indicate that for the given (α,β), ∆>1 for all S>0, so that only mutants that increase
assortment invade.


