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Abstract. We develop a simple framework for modeling speciation and diversification as a continuous process of
accumulation of genetic (or morphological) differences accompanied by species and subpopulation extinction and/or
range expansion. This framework can be used to approach a number of questions such as species-area distribution,
species–range size distribution, the rate of ecological turnover, asymmetries of range division between sister species,
waiting time until speciation and extinction, the relationship between the geographic range size and the probability
of speciation, the relationships between subpopulation-level parameters and metapopulation-level parameters, and the
effects of taxonomic level on these rates, distributions, and parameters. We illustrate some of these applications using
numerical simulations. We develop approximations describing the dependence of the number of different taxonomic
units, their average range size, and the rate of their turnover on the system size, the rate of fixation of genetic (or
morphological) changes in local demes, and the rate of local extinction and colonization.
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Most species are subdivided into a large number of local
subpopulations that often have small sizes. These local sub-
populations frequently become extinct and are recolonized
from other locations (Simberloff 1976; Wright 1978, ch. 2;
Schoener 1983; Lande 1984). Analysis of ecological and evo-
lutionary consequences of local extinction and colonization
has been a focus of numerous experimental and theoretical
studies (see recent reviews by Hastings and Harrison 1994;
Harrison and Hastings 1996; Barton and Whitlock 1997; Han-
ski and Gilpin 1997; Hanski 1998). Previous work on evo-
lutionary effects of local extinction and colonization in me-
tapopulations has been mainly concerned with the levels of
genetic variation within and between local populations, with
fixation probabilities and fixation times, and with Wright’s
shifting balance theory (e.g., Wright 1940; Levins 1970; Slat-
kin 1977; Slatkin and Wade 1978; Wade 1978; Lande 1979,
1984, 1992; Maruyama and Kimura 1980; Wade and Mc-
Cauley 1988; Whitlock and McCauley 1990; Barton 1993;
Michalakis and Olivieri 1993; Whitlock et al. 1993).

Here, we apply similar ideas in the context of speciation
and diversification by modeling how a species occupying a
range of ‘‘patches’’ breaks up into two or more new species.
Understanding speciation still remains a major challenge
faced by evolutionary biologists (Mayr 1982; Coyne 1992;
Templeton 1994). Distinctive features of the model proposed
here are that it is simple, dynamical, describes the complete
process of speciation, and can be easily implemented on a
computer. This model is a simplified version of that studied
numerically in Gavrilets et al. (1998, 2000) and analytically
in Gavrilets (1999b), which in turn represents a specific case
of holey adaptive landscapes (Gavrilets 1997a,b, 2000; Gav-
rilets and Gravner 1997). Within this framework, speciation
is a consequence of accumulating genetic differences, which
is in accord with a classical view of speciation (e.g., Dob-
zhansky 1937; Coyne 1992; Wu and Palopoli 1994). A new
element of the current work is that we consider not just a
single act of speciation, but rather a continuous process of
species splitting into two or more new species followed by

range expansion and/or extinction. Our approach is closely
related to several previous studies. In particular, Orr and Orr
(1996) and Gavrilets (1999b) modeled allopatric speciation
without considering extinction and colonization. These two-
processes were not included by Manzo and Peliti (1994),
Gavrilets et al. (1998, 2000), and Gavrilets (1999b) in their
models of parapatric speciation. Bramson et al. (1996, 1998),
Durrett and Levin (1996), and Allmon et al. (1998) modeled
the process of extinction and speciation in a metapopulation,
but did not consider the degree of genetic divergence between
subpopulations. Our approach complements these previous
studies by simultaneously considering both the process of the
accumulation of genetic differences between subpopulations
that leads to speciation and diversification and the process
of extinction and colonization of local demes that leads to
species extinction or expansion.

Our model can be used to approach a number of questions
that have been extensively discussed in the literature. These
questions include species-area distribution (e.g., Connor and
McCoy 1979; Rosenzweig 1995), species–range size distri-
bution (e.g., Gaston 1996, 1998; Gavrilets et al. 2000), the
rate of ecological turnover (e.g., Russell 1998), asymmetries
of range division between sister species (e.g., Brown 1957;
Mayr 1963; Lynch 1989; Frey 1993; Rosenzweig 1995; Wag-
ner and Erwin 1995; Chown 1997; Gavrilets et al. 1998,
2000), waiting time until speciation (e.g., Orr and Orr 1996;
Gavrilets at al. 1998, 2000) and extinction, the relationship
between the geographic range size and the probability of
speciation (e.g., Stanley 1986, 1990; Gavrilets et al. 1998,
2000), dynamics of adaptive radiations (e.g., Schluter 1998),
the relationships between subpopulation-level parameters and
metapopulation-level parameters, and the effects of taxonom-
ic order on these rates, distributions, and parameters. We will
illustrate most of these applications below. In addition, in-
sights provided by models that describe the splitting of geo-
graphic space between sister species may be useful for think-
ing about the way species partition other resources (e.g., Su-
gihara 1980; Nee et al. 1991; Takeshi 1993). Finally, the
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development of theoretical models focusing on the dynamics
of speciation in spatially distributed populations would com-
plement data analyses focusing on spatial aspects of molec-
ular processes leading to speciation (e.g., Avise et al. 1987;
Avise 1994; Barraclough and Vogel 2000).

In developing the model described below, we will follow
the classical metapopulation approach (Levins 1970; see re-
view by Hanski 1991) by neglecting effects of migration in
extant demes. This approach can be questioned on several
grounds (e.g., Stacey et al. 1997). However, as emphasized
by Hanski (1997), first, it is too early to conclude that clas-
sical Levins-type metapopulations are exceptional, and, sec-
ond, a better understanding of the classical case is necessary
for enhancing our understanding of metapopulation dynamics
in more general situations. Our modeling approach will imply
that in the absence of extinction the demes would continu-
ously accumulate new mutations and diverge genetically (cf.
Orr and Orr 1996). As a working example, we envision a
plant metapopulation where local demes produce a large num-
ber of seeds of which only few germinate. In this case, mi-
grant seeds will have extremely small probability of germi-
nating unless there is an extinction event eliminating all or
most resident plants. Genetic consequences of migration into
extant demes can be neglected only if the rate of migration
is small. However, this rate does not have to be extremely
small. Individual-based simulations and analytical approxi-
mations (Gavrilets et al. 1998, 2000; Gavrilets 1999b) show
that continuous genetic divergence can be initiated even when
neighboring demes exchange as many as one to three indi-
viduals per generation. With low levels of gene flow relative
to the rate of extinction and recolonization, the level of ge-
netic divergence of local populations is controlled by the
latter rate (Slatkin 1977; Lande 1992). Here, it is the ex-
tinction and recolonization process, rather than migration,
that will prevent the infinite divergence of local populations.

MODEL

We consider a habitat subdivided into discrete ‘‘patches,’’
each of which can support a finite number of individuals.
The patches are inhabited by populations with discrete and
nonoverlapping generations (one population per patch). We
assume that reproduction involves gene exchange (amphi-
mixis) between individuals and that there is a large number
of possibly linked loci potentially affecting reproductive iso-
lation.

System State

Here, we will be interested in the level of genetic diver-
gence between subpopulations in a specific set of genes. This
can be characterized in terms of genetic distance, d, between
pairs of individuals defined as the number of single locus
substitutions (mutational steps) separating two individuals.
For a moment, we do not specify the loci over which d is
computed. If there are only two alleles per locus, d is just
the number of loci at which two individuals are different.
Consider two patches, the ith and jth. Let Dij be the average
genetic distance between subpopulations at patches i and j
defined as the average of genetic distances, d, between pairs
of individuals from these two patches. In what follows the

state of a system with n patches will be characterized by a
symmetric n 3 n matrix D 5 {Dij} (1 # i, j # n) of average
genetic distances between pairs of subpopulations. The di-
agonal elements of this matrix characterize the level of ge-
netic variation within demes. Below, we will assume these
elements to be maintained at an approximately constant level
Dw by a balance of selection, mutation, drift and other factors.

Mutation

At each time step, a mutation can be fixed in each deme
with probability m. (The dependence of m on population size,
mutation and migration rates, effects of reproductive isola-
tion, selection for local adaptation, and other factors is dis-
cussed for a specific model in Gavrilets 1999b.) The prob-
ability m is assumed to be small, whereas the number of
possible mutations is large so that each mutation that is fixed
in a deme is new to the system. Thus, if a new mutation is
fixed in deme i, all average genetic distances to this deme
increase by one:

D → D 1 1 for all j ± i.ij ij (1)

Extinction and Colonization

At each time step, each population may go extinct with a
small probability d. Immediately after extinction, the deme
is colonized by individuals from one of the ‘‘neighboring’’
nonextinct demes. (The assumption that colonization happens
immediately after extinction is not a serious limitation of the
approach [see Durrett and Levin 1996].) Following previous
work (e.g., Slatkin and Wade 1978; Lande 1992), we assume
that newly founded populations increase to carrying capacity
in one generation. Thus, if deme i goes extinct and is col-
onized from deme i*, the average genetic distances to deme
i are substituted by average genetic distances to deme i*:

D → D for all j ± i.ij i*j (2)

Reproductive Isolation and Species

The set of genes over which genetic distance, d, is com-
puted will represent the loci affecting viability, fertility, and
mating behavior. We assume that reproductive isolation is
caused by cumulative genetic change in these loci. We will
use a very simple symmetric model (Gavrilets et al. 1998,
2000; Gavrilets 1999b; cf. Higgs and Derrida 1992) that al-
lows one to treat both pre- and postmating isolation within
the same framework. We posit that an encounter of two in-
dividuals can result in viable and fecund offspring only if
the individuals are different by no more than K mutational
steps. Otherwise the individuals do not mate (premating re-
productive isolation) or these offspring are inviable or sterile
(postmating reproductive isolation). In this formulation, any
two genotypes different by more than K mutational steps can
be conceptualized as sitting on opposite sides of a hole in a
holey adaptive landscape (Gavrilets 1997a,b, 2000; Gavrilets
and Gravner 1997; Gavrilets et al. 1998). At the same time,
a population can evolve to any reproductively isolated state
by a chain of single-locus substitutions. Two individuals are
reproductively isolated if the genetic distance between them
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FIG. 1. The dynamics of species borders. The horizontal axes rep-
resents spatial dimension. The vertical axes represents time (about
6000 generations). The lines represent species borders. Data are
plotted every 20th time step. The emergence of several new borders
(representing speciation) as well as several border collisions (rep-
resenting extinction) and border disappearances are observed. Pa-
rameters are n 5 400, m 5 0.001, d 5 0.06, K 5 20.

is larger than K. Two subpopulations are completely repro-
ductively isolated if the minimum genetic distance between
individuals coming from different populations is larger than
K. A criterion for reproductive isolation of populations i and
j that will be used below is Dij . K9 [ K 1 D with some
positive D that depends on the level of within-population
variation. Using a sufficiently large D will almost certainly
guarantee that no genetic distance between individuals from
different subpopulations is smaller than K. Appropriate val-
ues of D can be approximated analytically (see Gavrilets
1999b). In what follows, we will use K (i.e., drop the prime
in K9). We will define a species as a continuous chain of
patches formed by pairs of demes that are not reproductively
isolated. This definition implies that if demes i and j are not
reproductively isolated (Dij # K) and demes j and k are not
reproductively isolated (Djk # K), then all three demes belong
to the same species, even if demes i and k are reproductively
isolated (Dik . K). This definition is analogous to that one
used in the single linkage clustering technique (e.g., Everitt
1993). It would treat all demes forming a ring species (e.g.,
Mayr 1942, 1963; Wake 1997) as belonging to a single bi-
ological species. Note that here it is not continuous gene flow,
but common ancestry that ‘‘keeps’’ a species together.

Numerical Algorithm

It is very easy to simulate the model dynamics numerically.
One starts with an initial matrix D. For example, one can
choose a matrix with all diagonal and nondiagonal elements
equal to Dw, which would correspond to a single species.
(Initial conditions are not important as far as the final sto-
chastic state is concerned.) Then, for each generation do the
following: For each deme decide whether it fixes a new mu-
tation (with probability m) or not (with probability 1 2 m).
Update the elements of matrix D for the demes that have
fixed new mutations using equation (1). For each deme decide
whether it goes extinct (with probability d) or not (with prob-
ability 1 2 d). For each deme that goes extinct randomly
pick up a ‘‘neighboring,’’ nonextinct deme from which the
colonization will take place. Update the corresponding ele-
ments of matrix D using equation (2).

Graphical Output and Statistics

Let us assume that the demes are linearly arranged (as in
the linear stepping-stone model; Kimura and Weiss 1964)
and that colonization occurs from one of the two nearest
neighboring demes. A common method for visualizing the
state of one- and two-dimensional stepping-stone systems is
to use different colors to represent the state of patches. Here,
instead of concentrating on individual demes we focus on the
differences between pairs of neighboring demes. We use lin-
early arranged along the x-coordinate colored pixels to rep-
resent the average genetic distances between neighboring
demes. For example, a pixel at position i will represent the
average genetic distance between demes i and i 1 1. We use
the y-coordinate for time variable. If one is mainly interested
in the dynamics of species borders, only two colors need to
be used: one for the distances smaller or equal to K and
another for the distances larger than K. The latter color will
represent species borders (see Fig. 1). However, one can get

additional information by using more colors. For example,
one can use colors from red to orange to yellow to green to
blue to purple to represent a continuum of distances from D
5 Dw to D 5 K (see a color figure at www.tiem.utk.edu/
;gavrila/PAPS/meta-fig.html). Here, different colors would
correspond to different levels of genetic divergence (within
species and/or between species). This graphical output rep-
resents a very powerful method for training intuition about
the dynamic behavior of the model studied here. Additionally,
a set of different statistics can be computed, such as the
number of species (counted by the number of borders), the
distribution of species ranges, the distributions of the time
to speciation and extinction, and the distribution of the rel-
ative ranges of the two sister species a species splits.

NUMERICAL AND ANALYTICAL RESULTS

We consider a system of n demes arranged on a circle.
(This allows one to exclude boundary effects.) We start by-
reporting some numerical results and then give analytical
approximations for three important characteristics of system
dynamics.

While running the model numerically, one observes a con-
tinuous process of emergence, random movement, collision,
and annihilation of borders (see Fig. 1). A new border can
appear after a mutation in a deme, after extinction of an
‘‘intermediate’’ deme (or a chain of adjacent demes), or after
a collision of two borders. (We treat borders that appear from
collision as new borders.) Borders disappear in isolation or
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FIG. 2. The distribution of the life span of borders. Parameters are n 5 400; K 5 20; m 5 0.001; d 5 0.04. (a) Borders that appear
and disappear in isolation. (b) Borders that appear in isolation and disappear in collision.

as a result of border collision. The former case happens when
a deme has significantly diverged from one of its two nearest
neighbors, but the right and left neighbors, although isolated
geographically, are still similar genetically. In this case, the
extinction of the middle deme will result in border disap-
pearance. Such borders can be interpreted as representing
speciation events that were not successful. In the case of
border collision, all demes between two neighboring borders
go extinct simultaneously. We interpret such events as ‘‘spe-
cies extinction.’’

From watching the model dynamics on the computer
screen, it is apparent that the life span of borders that appear
and disappear in isolation is much shorter than the life span
of borders that disappear in collisions. Figures 2a and 2b
make this point more precise.

Figure 3 illustrates the changes in the number of borders
during 106 generations. The number of unsuccessful speci-
ation events (characterized by the number of borders that
disappear in isolation) is larger than the number of ‘‘real’’
speciation events (characterized by the number of borders
that disappear in collision). However, because the former

have relatively short life spans they will not contribute sig-
nificantly to the average number of borders. Thus, the average
number of species, S (over a long time interval), can be es-
timated by the average number of borders.

Figure 4 illustrates the distribution of species range size.
The data for this figure were collected over the interval from
generation 50,000 to generation 1,050,000 by sampling every
1000th generation. This distribution is right-skewed on the
linear scale (Fig. 4a) and becomes left-skewed on the log-
scale (Fig. 4b). These properties are similar to those of the
species-range distributions estimated from real data (e.g.,
Gaston 1996, 1998). Species are more likely to break at the
center of their range (Fig. 5; cf. Gavrilets et al. 1998, 2000).
The larger the species range, the more likely it will break.
However, because there are not many species with very large
range sizes (see Fig. 4), the species that contribute the largest
number of new species are those with intermediate range sizes
(Fig. 6).

Simple analytical approximations can be used to evaluate
the dependence of some important dynamical characteristics
of the model on parameters (see Appendix for details). The
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FIG. 3. The number of species (borders) during 106 generations.
The datapoints were sampled every 1000th generation. Parameters
are the same as in Figure 2.

formulae given below assume that the mutation rate is much
smaller than the extinction/colonization rate, which is small,
and that the number of genetic differences necessary for spe-
ciation is sufficiently high (m ,, d ,, 1 ,, K). The
average range size, R, of a species (that is the number of
demes between two neighboring borders) is

p dK
R 5 . (3)!2 m

The average number of species, S, in the system is

2 m
S 5 n. (4)!p dK

Note that S 5 n/R. The average turnover rate, T, can be
defined as the number of species extinctions per unit time
interval per the number of species present (e.g., Russell
1998). Here, species extinction is represented by the collision
of two species borders. The turnover rate is

m
T 5 . (5)

K

To check these analytical approximations and to get further
insights into the model dynamics, we performed numerical
simulations. The following is a list of parameter values used:
m 5 0.01, 0.001, 0.0001; d 5 0.01, 0.02, 0.04, 0.16; K 5
10, 20, 40, 80; and n 5 100, 200, 400, 800. We considered

all 192 (3 3 4 3 4 3 4) possible combinations of parameters.
The match of theoretical predictions and numerical estimates
computed overthe interval from generation 50,000 to gen-
eration 550,000 is very good. In most cases, equation (4)
underestimates the average number of species by ;2%,
whereas equation (5) overestimates the turnover rate by about
5–10%. In the case of the smallest mutation rate (m 5
0.0001), the errors are slightly higher.

DISCUSSION

Here, we have studied speciation as a continuous process
of accumulation of genetic differences accompanied by spe-
cies and subpopulation extinction and/or range expansion. In
our model, reproductive isolation is a consequence of cu-
mulative genetic divergence over a large set of loci poten-
tially affecting viability, fertility, or mating behavior (e.g.,
Wu and Palopoli 1994; Naveira and Masida 1998). Alter-
natively, hybrid sterility or inviability can result from in-
compatibility of few ‘‘complementary’’ genes as modeled by
Orr (1995; Orr and Orr 1996). In both approaches, a popu-
lation can evolve from one state to a reproductively isolated
state along a ‘‘ridge’’ of well-fit genotypes without any mal-
adaptive steps, as first suggested by Bateman (cited in Orr
1997) and Dobzhansky (1937). Note that the existence of
such ‘‘ridges’’ is a general feature of multidimensional adap-
tive landscapes (Gavrilets and Gravner 1997; Gavrilets
1997a, 2000), rather than a property of a specific genetic
architecture. For simplicity, we assumed that the state of no
reproductive isolation changes to complete reproductive iso-
lation when genetic divergence exceeds some threshold. Oth-
er types of genetic architecture can result in a gradual ac-
cumulation of reproductive isolation. For example, in Orr’s
(1995) model reproductive isolation increases faster than lin-
early in time (the ‘‘snowball effect’’), whereas in a classical
model of viability selection with between-locus multiplica-
tivity and weak within-locus underdominance a ‘‘slow-
down’’ is observed (Walsh 1982). However, for the problems
we approach here, whether reproductive isolation appears
suddenly or accumulates gradually is largely irrelevant.

The main application of the mathematical model we have
developed is to provide new insights, to train intuition and
make it more precise, and to identify key components in the
complex process of speciation in metapopulations. Intuition
tells one that increasing the rate of fixation of new mutations
should increase the rate of speciation increasing the number
of species in the system. Decreasing the rate of extinction-
colonization should have a similar effect because larger levels
of genetic variation will accumulate in the system. Our results
make this intuition more precise by demonstrating that actual
dependence is square-root (see eqs. 3 and 4). For example,
changing d or m by a factor of four will result in a change
in the number of species and the average range size by a
factor of two. These results provide a formal justification for
the idea that species can accumulate rapidly after colonizing
a new environment if local populations in the novel envi-
ronment have a reduced probability of extinction (e.g., Mayr
1963; Allmon 1992; Schluter 1998). A somewhat counter-
intuitive prediction is that the turnover rate, T, does not de-
pend on the deme extinction-colonization rate, d (see eq. 5).



1498 SERGEY GAVRILETS ET AL.

FIG. 4. The species–range size distribution: (a) Linear scale; and (b) logarithmic scale. Parameters are the same as in Figure 2.

This happens because the increase in the extinction rate re-
sulting from an increase in d is exactly balanced by a decrease
in the number of species, S, maintained in the system. The
model produces a species–range size distribution similar to
those deduced from data (e.g., Gaston 1996, 1998) and ex-
ponential distributions of life-span of species and borders
between them. The model shows that there is a large number
of unsuccessful speciation events in which a deme may sig-
nificantly diverge from one of its neighbors (which both stay
similar), but then go extinct, resulting in reconstructing the
continuity in a species range. For discussion of species-area
curves in similar two-dimensional systems with K 5 1, see
Bramson et al. (1996) and Durrett and Levin (1996).

An important parameter of our model is K, which was
introduced above as a minimum genetic divergence required
for reproductive isolation. Intuition suggests that increasing
K should result in decreasing the number of species. In our
model, the exact dependence is 1/ . The model alsoÏK-type
shows that the rate of species turnover should decrease as 1/
K. This results in that in clades with, say, four times as many
genetic changes required for speciation, there will be only

half as many species and the turnover rate will be one-fourth
of that in a reference clade.

The model was developed for sexual species. However,
because reproductive isolation is treated as a by-product of
genetic divergence, the framework can be used for modeling
the dynamics of speciation in asexual species. In this case
the criterion for assigning different demes to different or the
same species will be the degree of genetic divergence be-
tween them. Moreover, our framework can be used for mod-
eling both genetic divergence and morphological divergence.
In this case, the matrix of pairwise distances between demes
will represent ‘‘morphological’’ distance defined as an av-
erage number of morphological traits at that the correspond-
ing subpopulations differ (for an application of this approach
to a paleontological dataset, see Gavrilets 1999a).

There is an alternative interpretation of parameter K rel-
evant for both sexual and asexual species as well as for the
case of morphological distances. It is important to realize
that changing this parameter does not change the system state
(which is described by a matrix of pairwise distances) or
dynamics. What is affected by K is the graphical output and
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FIG. 5. The distribution of the location of the break relative to the
ancestral species range. For an ancestral species splitting in pro-
portions x:y, the normalized location of the break is defined as x/
(x 1 y). Parameters are the same as in Figure 2.

FIG. 6. The distribution of the species ranges at speciation. Pa-
rameters are the same as in Figure 2.

the corresponding interpretation of the model behavior. Pa-
rameter K can be thought of as a measure of taxonomic level.
For example, let us specify an increasing sequence of K-
values: K1 , K2 , K3 . . . . Then, all demes at genetic (or
morphological) distance K1 or less can be thought of as be-
longing to the same species, all demes at genetic (or mor-
phological) distance larger than K1 but not larger than K2 can
be thought of as belonging to different species within the
same genus, all demes at genetic (or morphological) distance
larger than K2 but smaller or equal to K3 can be thought of
as belonging to different species and genera within the same
family, etc. This approach allows one to study the dynamics
of the hierarchical structure of the metapopulation. Using this
interpretation, equations (4) and (5) show that both the num-
ber of different taxonomic units and the turnover rate de-
crease with taxonomic level (1/ -dependence in the formerÏK
case and 1/K-dependence in the latter case). This also leads
to some interesting dependences that probably can be eval-
uated empirically. One prediction is that the ratio of turnover
rates at two different taxonomic levels should be the inverse
of the ratio of average genetic (or morphological) differences
between the corresponding groups:

KT ji 5 . (6)
T Kj i

The number of genetic (morphological) differences, Ki, may
not be easy to estimate. However, the number of taxonomic
units at different taxonomic levels (e.g., species within a
genus or genera within a family) can be approximated (e.g.,
Burlando 1990). Combining equations (4) and(5) for two
different taxonomic levels leads to

2ST ji 5 . (7)1 2T Sj i

It would be interesting to use existing paleontological data

to evaluate the relationships between the turnover rates and
the number of taxonomic units at different taxonomic levels,
such as described by equations (6) and (7).

The model studied here has obvious limitations that will
make testing predictions using real data more difficult.
Among the most serious are that we consider a one-dimen-
sional spatial arrangement of demes rather than two-dimen-
sional, migration into occupied demes has no effects on the
probability of fixing new mutations, and no more than a single
population can occupy a patch. However, both the framework
developed here and the insights it leads to should be helpful
in developing more realistic models that would remove these
limitations.
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APPENDIX

First we estimate the probability s that two neighboring demes,
say, x and y, belong to different species. Looking back in time,
these two demes canbe traced to a single founding deme t gener-
ations ago. Using a coalescing random-walk system on a one-di-
mensional lattice in which walks move to either neighboring site
with probability d/2 and coalesce when they meet, we find the
probability distribution of the time t until the first common ancestor
is asymptotically

1
P(t $ t) ; (A1)

Ïdpt

(e.g., Kelly 1977; cf. Bramson et al. 1996). Demes x and y belong
to different species if they have accumulated K mutations since
time t generations ago. With small m, the process of mutation ac-

cumulation is Poisson. We will use X(l) to denote a generic
Poisson(l) random variable. Therefore, the probability that x and
y are different species is

s 5 P[X(2mt) $ K ] 5 P[X(2mt) $ K ]P(t 5 t), (A2)O
t

which is (for small d and m/d) approximated by
`1

23/2P[X(2mt) $ K ]t dt. (A3)E
2Ïdp 0

Because
t

P[X(t) $ a] 5 P[X(u) 5 a 2 1] du, (A4)E
0

we get, for b . 1 and a . b 2 1,
` `1

2b 12bP[X(t) $ a]t dt 5 t P[X(t) 5 a 2 1] dtE Eb 2 10 0

G(a 2 b 1 1)
5 . (A5)

(b 2 1)(a 2 1)!

Therefore, the asymptotic density of borders between different
species is, for a fixed K,

2m G(K 2 1/2)
s 5 · . (A6)!pd (K 2 1)!

The last factor is asymptotic to K21/2 for large K.
Equation (3). The average range size, R, of a species is the

inverse of s.
Equation (4). The average number of species, S, in the system

is sn.
Equation (5). First we give a qualitative argument why T is of

the order m/K. Species extinction is represented by the collision of
two species borders. The dynamics of species borders can be mod-
eled as a random walk on a one-dimensional lattice with the dif-
fusion coefficient d/2. To move distance L, it takes order L2/(d/2)
time steps. Because the average distance between borders is R, they
will collide on average in order R2/(d/2) time steps. The rate of
collision (turnover rate, T) is the inverse of this, resulting in the
turnover rate order m/K. A more rigorous derivation based on a
consideration of the process of creation and annihilation of borders
leads to the conclusion that for K $ 2,

m
T 5 2 some smaller terms. (A7)

K 2 3/2

For K 5 1, the turnover rate is asymptotically

2d
T 5 , (A8)!m

which is quite different than for K . 1.


