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Multilocus population genetics is the study of the distribution and dynamics of genetic variation
at several loci in biological populations.

Haplotypes

Even the simplest known biological organisms have thousands of genes and millions of DNA base
pairs. This makes it necessary to study the distribution and dynamics of genetic variation at many
loci (or genetic markers) simultaneously. A particular combination of genes (or genetic markers) for
a DNA segment under consideration is referred to as haplotype. In what follows different haplotypes
will be represented by sequences of bold letters corresponding to different alleles (for example A, aB,
ABC) whereas the frequencies of these haplotypes in the population will be represented by variable
x with a corresponding subscript (for example xA, xaB, xABC). If a diploid population is at Hardy-
Weinberg equilibrium, then genotype frequencies can be found as products of the corresponding
haplotype frequencies. In this case, the population state can be described in terms of the haplotype
frequencies.

Linkage equilibrium and disequilibrium

If there is no statistical association of alleles in haplotypes, then the frequency of a haplotype is equal
to the product of the corresponding allele frequencies. In this case, one says that the population is
at linkage equilibrium. For example, in such a population xaB = xaxB, xABC = xAxBxC and so on.
If there is statistical association of alleles in haplotypes, one says that the population is at linkage
disequilibrium. [The term “linkage disequilibrium” is somewhat misleading because even unlinked
loci can be in “linkage disequilibrium” and because other factors besides linkage can affect the degree
of statistical association of different alleles. Alternative terms used are “gametic (dis)equilibrium”
and “gametic phase (dis)equilibrium”.]
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A standard measure of the statistical association between a pair of alleles A and B at two
different loci is linkage (or gametic) disequilibrium DAB defined as the deviation of the haplotype
frequency from that expected at linkage equilibrium:

DAB = xAB − xAxB.

For a population at linkage equilibrium DAB = 0. The coefficient D can be positive or negative
depending on whether alleles A and B are in coupling disequilibrium (haplotypes AB are over-
represented) or in repulsion disequilibrium (haplotypes AB are underrepresented). Large linkage
disequilibrium values mean that haplotype frequencies cannot be found, even approximately, as
products of the corresponding allele frequencies. In the diallelic case that is when there are only
two alleles at each locus under consideration, say alleles A and a at the first locus and alleles B
and b at the second locus, the above definition of DAB is equivalent to

DAB = xABxab − xAbxaB.

Thus, D can be found as the difference of the products of the frequencies of complimentary haplo-
types. The range of possible values of D depends on the allele frequencies: D cannot be larger than
min(xAxb, xaxB) and cannot be smaller than max(−xAxB,−xaxb). [”min” and ”max” mean ”the
smaller of” and ”the larger of”, respectively.] Besides D, other measures of linkage disequilibrium
have been used. One such measure is the square of the correlation coefficient between the presence
of alleles defined as

R2 =
D2

xAxBxaxb
.

This measure has a range from zero (linkage equilibrium) to one (complete linkage disequilibrium).
Recombination re-shuffles alleles reducing the absolute value of linkage disequilibrium. Assume

that the population size is sufficiently large, mating is random, and that selection and other factors
are absent. If DAB(t) is linkage disequilibrium at generation t, then in the next generation

DAB(t+ 1) = (1− rAB)DAB(t),

where rAB is the probability of recombination between the two loci under consideration (0 ≤ rAB ≤
0.5). This shows that as time increases, the population approaches the state of linkage equilibrium
(at which DAB = 0). The approach is very rapid for unlinked loci (for which rAB = 0.5) but can
be very slow for closely linked loci (for which rAB << 0.5). For example, with r = 0.001, it will
take about 700 generations of random mating to reduce D by half. Some degree of inbreeding or
asexual reproduction in the population will reduce the rate of decay of disequilibrium in a manner
similar to that resulting from physical linkage.

There are several ways to introduce higher order disequilibria between specific alleles at more
than two loci. A common approach is to use indicator variables li equal to 1 if the corresponding
allele is present at the i-locus and equal to 0 otherwise, and to define the n-th order disequilibrium
between n alleles at different loci as the n-th order covariance:

D12...n = E[(l1 − p1)(l2 − p2) . . . (ln − pn)]

(Slatkin 1972). Here pi is the frequency of the allele at the i-th locus and E[. . .] means mathematical
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expectation. With this definition, the linkage disequilibrium between alleles A, B and C at three
different loci is

DABC = xABC − xADBC − xBDAC − xCDAB − xAxBxC,

where DBC, DAC and DAB are the corresponding pairwise linkage disequilibria. The linkage dise-
quilibrium between alleles A, B, C and D at four different loci is

DABCD = xABCD − xADBCD − xBDACD − xCDABD − xDDABC

− xAxBDCD − xAxCDBD − xAxDDBC

− xBxCDAD − xBxDDAC − xCxDDAB − xAxBxCxD.

The set of allele frequencies and linkage disequilibria of different orders provides an alternative
way to describe the state of a population at Hardy-Weinberg equilibrium. If the population under
consideration is at linkage equilibrium, its analysis is significantly simplified because one has to
concentrate only on allele frequencies. However different factors operating in natural populations
are expected to introduce and maintain linkage disequilibrium. If the loci are in a state of linkage
disequilibrium, the changes in allele frequency in one locus are not independent of changes at
another locus. Linkage disequilibrium is relevant to a variety of evolutionary topics including
molecular evolution, phenotypic evolution, sexual selection, evolution of sex and recombination, and
speciation. Analysis of linkage disequilibrium is extremely useful and important in medical genetics
where it can provide high resolution in the mapping of disease genes. Linkage disequilibrium is
extensively used in different marker-assisted selection protocols used in agricultural breeding for
the improvement of quantitative characters.

Additive, multiplicative, epistatic fitness regimes

Analysis of the dynamics of the genetic structure of populations under different selection regimes
has been a focus of multilocus population genetics. Biological organisms are different with respect
to various characteristics affecting fitness (e.g. viability, fecundity, fertility, attractiveness for the
opposite sex etc). Multilocus theory has been mostly developed in the context of viability selection
where fitness (viability) is defined as the probability of survival to the age of reproduction. Under
this form of selection, populations are at Hardy-Weinberg equilibrium, and, thus, the population
state can be completely characterized in terms of haplotype frequencies.

Let variables I, J and K denote different L-locus haplotypes. The genotype of a diploid organism
can be described by a pair of these variables, for example JK. In a randomly mating diploid
population with discrete non-overlapping generations experiencing viability selection defined by
genotype fitnesses wJK , the dynamics of the frequency xI of haplotype I are described by a general
recurrence equation

xI(t+ 1) =

∑
J

∑
K wJKxJ(t)xK(t)R(J,K → I)

w
,

where
w =

∑
J

∑
K

wJKxJ(t)xK(t)

is the mean fitness of the population and R(J,K → I) is the probability that a genotype formed
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from haplotypes J and K produces gamete I.
The case of two diallelic loci has been studied in much detail. In this case there are four

different haplotypes, say AB, Ab, aB and ab. Let x1, x2, x2 and x4 be the corresponding haplotype
frequencies. If there are no cis-trans effects (that is the fitnesses of both double heterozygotes
AB/ab and Ab/aB are identical: w14 = w23), the dynamic equations for the haplotype frequencies
can be rewritten as

xI(t+ 1) =
wI
w
xI(t)∓

rw14D

w

where r is the rate of recombination between the loci, D is the linkage disequilibrium, wI =
∑
J wIJxJ

is the induced (or average) fitness of haplotype I, and the sign is + for I = 2, 3 and − for I = 1, 4.
The dynamic equations given above have been used to approach three main questions: 1) the
maintenance of genetic variation under selection; 2) levels of linkage disequilibrium expected, and
3) the dependence of the outcome of evolutionary dynamics on initial conditions. Exact analytical
results exist for several different fitness regimes.

Table 1: Additive fitnesses in the two-locus two-allele case.

BB Bb bb
AA a1 + b1 a1 + b2 a1 + b3

Aa a2 + b1 a2 + b2 a2 + b3

aa a3 + b1 a3 + b2 a3 + b3

In the additive fitness regime, the fitness, w, of an organism is found by summing up the
contributions, wi, of L individual loci:

w = w1 + w2 + . . .+ wL.

The additive model may be a reasonable approximation if contributions of individual loci to fitness
(or another trait under consideration) are small. Table 1 gives an example of additive fitnesses
in the two-locus two-allele case (L = 2). Here, the entry in the i-th row and j-th columns shows
the fitness of a genotype that has the specified genes in the first and second loci. Under additive
fitness regime, genetic variation at a locus is maintained only if there is overdominance that is the
heterozygous locus has higher fitness than homozygous loci. For instance using Table 1, genetic
variation in locus A will be maintained only if a2 > a1, a3. The population always evolves to a state
of linkage equilibrium. With underdominance that is the heterozygous locus has lower fitness than
homozygous loci (e.g. a2 < a1, a3) either allele can be fixed. Which one will be fixed depends on
initial conditions.

In the multiplicative fitness regime, the fitness, w, of an organism is found by multiplying the
contributions, wi, of individual loci:

w = w1 × w2 × . . .× wL.

The multiplicative model may be a reasonable approximation if the individual loci contribute to
fitness (or another trait under consideration) at different time moments. Table 2 gives an example of
multiplicative fitnesses in the two-locus two-allele case. Under multiplicative fitness regime, genetic



Page 5

Table 2: Multiplicative fitnesses in the two-locus two-allele case

BB Bb bb
AA a1b1 a1b2 a1b3

Aa a2b1 a2b2 a2b3

aa a3b1 a3b2 a3b3

variation at a locus is maintained only if there is overdominance. If genetic variation is maintained
in both loci under consideration, then in general the population will evolve to a linkage equilibrium
state if the rate of recombination between the loci is high enough, but to a linkage disequilibrium
state if the recombination rate is small. Several different linkage disequilibrium states can be stable
simultaneously and, thus, the outcome of evolution will depend on initial conditions. It is also
possible that both linkage equilibrium state and several different linkage disequilibrium states are
stable simultaneously.

Both the additive and multiplicative models imply that epistasis is absent - in these models
fitness does not depend on interactions between alleles at different loci. Because of the mathematical
difficulties in direct analyses of epistatic fitness regimes, in which alleles at different loci interact in
controlling fitness, one uses different simplifications and approximations.

One approach is to introduce some symmetries in the model. A well-studied two-locus two-allele
symmetric fitness model is given in Table 3. This model has a very rich spectrum of dynamic behav-
iors including existence of up to 4 simultaneously stable polymorphic equilibria and simultaneous
stability of equilibria with D = 0 and D 6= 0 (Karlin and Feldman 1970; Hastings 1985). Simultane-
ous stability of different equilibria implies the dependence of the outcome of the dynamics on initial
conditions (and history). The symmetric model has been generalized to more than two loci (e.g.
Feldman et al. 1974; Christiansen 1990). Other approaches are to consider only some specific types
of epistatic interaction (for example, additive-by-additive pairwise interactions as in Zhivotovsky
and Gavrilets 1992), or to assume that each locus only interacts with a specified number of other
loci (Kauffman 1993, Ch. 2), or to limit the number of different fitness values (for example, pulling
all well-fit genotypes in one fitness class and all inviable genotypes in another fitness class as in
Gavrilets 1997).

Table 3: Symmetric fitnesses in the two-locus two-allele case

BB Bb bb
AA δ β α
Aa γ η γ
aa α β δ

Some experimental data show that both the strength of selection and the degree of epistasis
are generally weak. This observation prompted the development of models allowing only for weak
selection and/or weak epistasis. The weak selection assumption is especially powerful for under this
approximation one can neglect linkage disequilibrium and study evolutionary dynamics in terms of
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allele frequencies. For example if the i-th locus is diallelic then the change in allele frequency pi
under weak viability selection can be approximated as

∆pi =
piqi
2

∂w

∂pi

where qi = 1 − pi. The last equation shows that the allele frequency stops changing (∆pi = 0)
if one allele is fixed (pi = 0 or qi = 0) or if the allele frequency is such that the mean fitness of
the population is at a local maximum or minimum (∂w/∂pi = 0). The states at which the mean
fitness of the population is at a local minimum are unstable to small perturbations. If selection is
weak (relative to recombination) the population evolves to a state at which the mean fitness w is
maximized.

Finally, extensive numerical studies of different epistatic fitness regimes have been performed
(e.g. Turelli and Ginzburg 1983; Gimelfarb 1998). The most common approach is to randomly assign
fitness values to the set of genotypes under consideration (for example, by picking them up from a
uniform random distribution between 0 and 1) and iterating the corresponding dynamic equations
(such as given above) for random sets on initial conditions to collect the statistics regarding possible
dynamical regimes.

Although finding some general principle governing multilocus dynamics has proven to be very
difficult some generalizations can be made. The overall conclusion of analytical and numerical
studies of different epistatic regimes is that populations are expected to evolve to a stationary state
(but see Hastings 1981), that there are rich possibilities for the maintenance of genetic variation,
that polymorphic loci exhibit induced overdominance, that linkage disequilibrium should be present
between closely linked loci, and that the outcome of evolution can significantly depend on initial
conditions and history. The latter means that natural populations still can diverge genetically even
if they are under very similar fitness regimes (that is exist under similar ecological conditions).
Close linkage promotes the maintenance of genetic variation. Maintaining genetic variation in a
number of loci need not be accompanied by a very heavy genetic load.

Causes of linkage disequilibrium

Selection is not the only factor causing linkage disequilibrium. In a population of a finite size
N , random genetic drift will almost certainly result in nonrandom association between alleles at
different loci. For a randomly mating population, the expected squared correlation R2 between the
presence of two linked alleles is

E[R2] =
1

1 + 4Nr
,

where r is the recombination rate (Hill and Robertson 1968). The sign of linkage disequilibrium
generated by random genetic drift can be both positive and negative. Increasing the population
size and the rate of recombination both decrease the expected value of R2.

Migration or hybridization of two populations with different allele frequencies can cause linkage
disequilibrium. For example, mixing individuals from two populations at linkage equilibrium each
in a single population in the proportions m1 : m2 will result in linkage disequilibrium value

D = m1m2(xA,1 − xA,2)(xB,1 − xB,2),
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where xA,i and xB,i are the frequencies of allele A and B in the i-th population (i = 1, 2). Population
subdivision also reduces the rate of decay of linkage disequilibrium. Interaction of non-epistatic
selection and migration can maintain stable linkage disequilibrium if different selection regimes
operates in the populations connected by migration.

At the molecular level, mutations are often unique. A mutant allele at a locus will be initially
associated with a particular allele at a second locus that happened to be present when the mutation
occurred. Thus, mutation is expected to generate some linkage disequilibrium. If the new mutant
has a selective advantage, it may increase in frequency. The allele associated with it may be carried
along (“hitchhike”). Linkage disequilibrium can be very easily generated in this manner. In a large
population, this type of disequilibria will eventually disappear if there is any recombination between
the loci. But for small recombination rates linkage disequilibrium is expected to last for a very long
time.

Non-random mating may result in linkage disequilibrium. Often, individuals chose mates whose
phenotype resembles their own (positive assortative mating). Positive assortative mating increases
the coupling of alleles with similar effects, resulting in the proliferation of coupling haplotypes.
Negative (or disassortative) mating leads to the proliferation of repulsion gametes, at which effects
of different loci are balanced. Another factor that can cause a build-up of linkage disequilibrium is
inbreeding.

Linkage disequilibrium observed in a population can be caused by factors (such as selection,
random drift, migration, mutation) no longer present that acted in the founding population and
generated linkage disequilibrium that has not yet had time to decay due to small rates of recombi-
nation.

Extent of disequilibrium in nature

From theoretical considerations, many factors such as selection, drift, mutation, selection at linked
loci, and non-random mating may be responsible for generating linkage disequilibrium, whereas
linkage and some other factors retard the rate of decay of linkage disequilibrium. There is a variety
of statistical methods for estimating linkage disequilibrium and testing hypotheses about its value
(e.g. Hedrick et al. 1978; Weir 1996; Lynch and Walsh 1998). For a few experimental systems,
such as Drosophila, one can count haplotypes directly and use the observed haplotype frequencies
in statistical procedures. However, for most natural populations, the only available information
are the frequencies of multilocus genotypes in the population under study. This requires some
special methods for the haplotype composition of heterozygotes cannot be resolved definitely. In
general, unless gene frequencies are close to 0.5 at both loci and disequilibrium is strong, hundreds
of individuals should be assayed to achieve a reasonable level of statistical power.

In outbreeding population pairs of polymorphic loci are usually found in linkage equilibrium,
or nearly so. However, linkage disequilibrium is common among polymorphic sites within genes,
because recombination rates there are very low. Some of the most extreme examples of linkage
disequilibrium arise from studies of plants that are predominantly self-fertilizing. Linkage disequi-
librium is also common in asexual populations. Hedrick et al. (1978) review many examples of
linkage disequilibrium in natural populations. In panmictic human populations linkage disequilib-
rium is usually not noticeable for genetic markers at distances exceeding 1 cM, but in parts of the
genome it is seen at distances as long as 1-2 cM, whereas for some markers, linkage disequilibrium
is absent for very short distances (Peterson et al. 1995).
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Glossary

Epistasis Allelic interaction resulting in that the effect of a gene on a trait (or fitness) depends on
the allelic state of one or more alleles at different loci.

Genetic load is the relative difference between the fitness of the most fit genotype, wmax, and
the mean fitness of the population, w: L = (wmax − w)/wmax. In most evolutionary and popula-
tion genetics considerations, genetic load is used as a measure of the amount of natural selection
associated with a certain amount of genetic variability.

Haplotype A particular combination of alleles (or genetic markers ) for the DNA segment under
consideration.

Linkage disequilibrium A state of non-random association of alleles (or genetic markers) in a
haplotype. Also a measure of the statistical deviation of two or more alleles in a haplotype from
random association.

Linkage equilibrium A state of random association of alleles (or genetic markers) in a haplotype.
For a population at linkage equilibrium haplotype frequencies can be found as products of the
corresponding allele frequencies.


