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We study multilocus polymorphism under selection, using a class of titness 
functions that account for additive, dominant, and pairwise additive-by-additive 
epistatic interactions. The dynamic equations are derived in terms of allele frequen- 
cies and disequilibria, using the notions of marginal systems and marginal titnesses, 
without any approximations. Stationary values of allele frequencies and pairwise 
disequihbria under weak selection are calculated by regular perturbation tech- 
niques We derive conditions for existence and stability of the multilocus poly- 
morphic states. Using these results, we then analyze a number of models describing 
stabilizing selection on additive characters, with some other factors, and determine 
the conditions under which genetic quantitative variability is maintained. 0 1992 

Academic Press, Inc. 

1. INTRODUCTION 

One of the most important unsolved problems of modern evolutionary 
theory concerns mechanisms responsible for the maintenance of high levels 
of genetic variability in quantitative characters observed in natural popula- 
tions. If the observed variability were selectively neutral, it could be easily 
maintained by mutation-drift equilibrium. But the majority of quantitative 
characters are influenced by natural selection, predominantly, stabilizing 
selection (Schmalhausen, 1946; Dobzhansky, 1970). Since genetic 
variability of a quantitative character may be influenced by more than one 
1ocus;can stabilizing selection or a character, per se, in the absence of other 
factors, maintain genetic variability at several loci of the quantitative 
character? To answer this question, one needs to analyze complex genetic 
systems under selection, since simple models show elimination of genetic 
variability under stabilizing selection on quantitative characters (Wright, 
1935; Robertson, 1956). This conclusion has stimulated further theoretical 
studies of the problem of maintaining the genetic variability of quantitative 
characters under selection. One needs more-complicated models dealing 
with epistatic interactions among loci. 
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The mechanism investigated in the most detail is mutation-selection 
balance (e.g., Kimura, 1965; Bulmer, 1972; Lande, 1975, 1980; Turelli, 
1984, 1988; Barton, 1986a; Burger, 1988; Gavrilets and Zhivotovsky, 1989; 
Barton and Turelli, 1989; Turelli and Barton, 1990; Keightley and Hill, 
1990; Zhivotovsky and Gavrilets, 1990a). Although the final answer cannot 
be given, it seems that recurrent mutations explain only part of the 
observed quantitative variability (Turelli, 1984, 1988). The possibility of 
maintaining variability was also demonstrated with models that incor- 
porate pleiotropy (Bulmer, 1973; Gillespie, 1984; Barton, 1990), genotype- 
by-environment interactions (Gillespie and Turelli, 1989) epistasis 
(Kojima, 1959; Gimelfarb, 1989), and unequal contributions of the loci 
(Nagylaki, 1989). The models of pleiotropic overdominance describe a 
situation in which, besides the additive contributions to the value of a 
quantitative trait, each heterozygous locus increases the fitness by a fixed 
value. The model considered by Gillespie and Turelli was constructed in 
such a manner that .the fitness of a genotype depends only on the number 
of heterozygous loci (this is a special case of the symmetric models [Karlin 
and Feldman, 1970; Karlin, 1979; Christiansen, 19881). Kojima found 
conditions for the maintenance of polymorphism at two loci under linkage 
equilibrium using Wright’s optimum model. Gimelfarb’s results are mainly 
numerical. Nagylaki considered special models with only two loci. Given 
the restrictions of these analyses, the problem of maintaining quantitative 
variability by means of stabilizing selection on quantitative characters, 
per se, is mostly open. 

It should be noted that the above problem is a part of the general 
problem of multilocus polymorphism under selection. It is well known 
that selection in complex genetic systems often leads to several stable 
polymorphic states, in particular, having linkage disequilibrium (Karlin 
and Feldman, 1970). The last conclusion is important because linkage dis- 
equilibrium can influence quantitative variability and other characteristics 
of the population (Gallais, 1974; Bulmer, 1974; Weir et al., 1980). 

Numerical simulations of multilocus dynamics show that selection can 
produce linkage disequilibrium having some effect on the variability of 
quantitative characters (Lewontin, 1964; Bulmer, 1976; Zhivotovsky, 
1984). The best known models that could be used to describe this effect in 
analytical form are models of Bulmer (1971, 1974, 1980) Lande (1975) 
and Turelli and Barton (1990). But these models are based on some 
assumptions about the phenotypic distributions and do not allow for a 
detailed analysis of the frequencies of genotypes. However, properties of 
complex genetic systems cannot be predicted a priori without knowing 
genetic parameters (Feldman et al., 1974). Hence, it is important to know 
the conditions for the existence of stable multilocus polymorphisms and 
analytical expressions for their genotypic frequencies. 
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In this paper, we introduce a new class of fitness functions that can be 
almost completely analyzed for the existence and stability of multilocus 
polymorphism and that includes a number of both known and new models 
describing the maintenance of polygenic variability. To determine equi- 
libria, we first transform the standard multilocus dynamic equations in 
terms of allele frequencies and disequilibria using a direct method for 
calculating induced litnesses. We then calculate equilibrium values of allele 
frequencies and pairwise linkage disequilibria using regular perturbation 
techniques. 

2. A CLASS OF FITNESS FUNCTION 

Let there be two alleles at each of II loci: Aj and a, (i = 1, . . . . n). Let us 
introduce indicator variables Ii (I() equal to 1 or 0 if the allele at the ith 
locus of the paternal (maternal) gamete is A, or ai. Then the genotype of 
an individual is defined by the pair of vectors ((I, I’), where I = (1i, . . . . I,) 
and I’ = (I’, , . . . . IL). Note that the frequency pi of allele Ai is the mean value 
(over the population) of indicator variable li (p,= E{li), where E denotes 
expectation) and that linkage disequilibrium (in the sense of Slatkin (1972) 
between loci i,j ,..., and k is Dti...k=E([lj-pi][l,-pi]...[lk-pk]). 

Let us introduce a class of fitness functions in the form of 

w[,s = /l+ 1 Ca;(li + I/) + 2bjljl3 + cc ifi 
where p, ai, bi, and cij= cji (i#j) are constants, such that w,,, >O for every 
,genotype. This fitness function is the simplest generalization of the additive 
model to include dominance and pairwise additive-by-additive epistatic 
interactions. When cii = 0 for all i, j, Eq. (1) is reduced to that of the 
standard model with additivity “between” loci and dominance “within” 
loci. Note that Eq. (1) remains unchanged as we exchange vectors 1 and I’ 
or the indicator variables li and I,‘. We thus assume that the effects of sex 
and position are absent. 

In this model the mean fitness can be represented as 

‘=CL+C(2aipi+2b,pf)+CCc,j(4p;p,+20,). 
, r#i 

(2) 

Hence the mean fitness depends only on allele frequencies and pairwise 
linkage disequilibria and not on linkage disequilibria of higher orders. 
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3. DYNAMIC EQUATIONS 

Consider a diploid random-mating population with nonoverlapping 
generations. Assume that the population size is sufficiently large to ignore 
the effects of drift. We assume viability selection. Let x(i) be the frequency 
of the ith gamete. Then the change in the frequency of gamete x(i) per 
generation (after selection and recombination) is 

Ax(i) = C C w,,,.x(l) x(f’) R(f, I’ -+ i)/W- x(i), (3) 
I, I’ 

where R(I, 1’ -+ i) is the probability that the individual (l, I’) produces 
gamete i. 

For n = 1 or n = 2, Eq. (3) can be rewritten in a more conventional form. 
If n = 1, then the change in the frequency pI of allele A, per generation is 

API = (u/l, - @I PI/R (4) 

where vA, = wAIA, pr + wAla,q, is the mean fitness of allele A,, q, = 1 - pl, 

and wAIA, and Y+, are the fitnesses of the single-locus genotypes. 
Let IZ = 2. We use a standard numeration of gametes and genotypes so 

that, for example, z,, z2, z3, and zq are frequencies of gametes A i A,, 
A, a2, a, A,, and a, a*. Changes in gamete frequencies are described by 

AZ, = ( uk - W) z,/W 

(k = 1, . ..) 4), (5) 

where r12 is the recombination fraction between loci, uk = C,, wkhzh is the 
mean fitness of gamete k, wkh is the fitness of the genotype formed from 
gametes k and h, and 6,=6,= -1,62=6,=l. 

From Eqs. (4) and (5) one can easily derive the equation for the change 
in linkage disequilibrium D,,. Since D,, = z1 - p, p2, 

(6) 

To study equilibria of n-locus systems (n > 2), we first derive dynamic 
equations for allele frequencies pi and pairwise linkage disequilibria D,, 
using the results of Ewens and Thomson (1977). 

Suppose that only m loci (m < n) are in fact observed. According to 
Ewens and Thomson, the dynamic equations for the “observed” m-locus 
gametes are the same as those for the genuine n-locus system, with the 
induced marginal Iitnesses taking the place of the actual litnesses and the 
induced probabilities of recombination replacing R(f, I’ + i). 
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Applying this result to single-locus marginal systems, we find that 
changes in allele frequencies are described by 

AP, = (VA, - W) Pib-4 (7) 

where vA, is the marginal fitness of allele Ai. The corresponding equation 
for the change in frequency zl, the two-locus gamete A,A,, is 

AZ, = (vA,A,-~)Z,/~--Yi,(V,4Z,Z~-V23Z*Z3)/~, (8) 

where vaza, is the marginal fitness of the two-locus gamete A jAi, v,~ and vz3 
are now the marginal litnesses of the two-locus genotype (A,A,/a,aj) and 
(Aiaj/aiAj), and rii is the recombination fraction between the ith and jth 
loci. Thus, to derive the dynamic equations for allele frequencies pi and 
linkage disequilibria D, using Eqs. (7) and (8) and (6), we should calculate 
the induced fttnesses uA,, v~,~,, v,~, and vz3. 

4. INDUCED FITNESSES 

In Appendix A, we describe a direct method for calculating induced 
titnesses. The essence of the method is the consideration of induced tit- 
nesses as the conditional means of functions of random variables 1; and 1; 
(Gavrilets and Zhivotovsky, 1989; Zhivotovsky and Gavrilets, 1990a). The 
resulting formulas are exact and are not based on any approximations that 
might lead to inconsistencies in estimates of selection coefficients (Walsh, 
1990). 

Applying this method, we derived the following formulas for the 
marginal allele fttnesses, 

V A,=‘+ CFk Dik ‘C C ‘kh Dikh pi, 

k k#h 

and for the induced fitness of gamete A, A,, 

V A,A, = @ + 
[ ( 

Pj 1 Fk D, + 1 C Ckh Dik/z 

k k # h > 

+ Pi C Fk Djk + 1 C Ckh Djk,r + C Fk Dijk 
k k z h > k 

+ 1 c ckh(Di,kh - DijDk,,)JIII(PiPi+Di,). (10) 
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where 

Fk = ak + 2bk Pk + 1 4Ckh Ph. 

h#k 

(11) 

Accordingly, the difference between v ,4z1 z4 and vz3z2z3 can be 
represented as 

V,,Z~Z,-V~~Z,Z~=D,~~+CF~ Dvk-C2bkDik D, 
k k 

+C C Ckh(D@h-D~ Dkh-D& L&h-D,, Djk). (12) 
k#h 

Using this method, we can also calculate the induced fitnesses of single- 
locus genotypes 

V A,A, = w + t2/Pi) Sl; + (l/P’) s21~ 

V A,u, = w + (l/Pi- l/Cl,) Sli- (l/Piqi) &r, 

V a,a, = @ - t2/qi) sli + (l/q;) S2r3 

where 

S,i=CFkDik +C 1 CkhDtkh, 

k kfh 

S2i= C 26, Dfk + C C2Ckh DikDih. 
k k#h 

We discuss these fitnesses below in connection with the principle of 
induced overdominance (Karlin, 1975; Hastings, 1982). 

5. ANALYSIS 

By substituting Eqs. (9)-(13) into (7) and (8) and using the relation in 
(6), we derive the exact dynamic equations for allele frequencies and 
pairwise disequilibria (Appendix A) 

Api= Fipiqi+ 1 FkDzk 
k#i 

+2(qi-Pi) 1 cikD,k+~~CkhDikh *, 

k#i k,h#i 
(14) 
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AD,= -r,; Dii+2c,P;qiPiqj/W 

+ 2Pi9, 1 cikD/k+2P,q/ 1 CjkDik 
( 

G-AP;AP, 
k2l.j k#l,/ 

+ 
i 

2C(1 -r;,) Cii(qi- Pi)(CIi- Pi) + rii(b,Piq;+ hjPjqi)l D, 

+(l-rg) 
[ 

(qi-Pi)‘iD,+(qj-Pj)~jDD,+ 1 FkDijk 
k#i,J 

k#i,J k+LJ 

+ C hk Dik Djk W. (15) 
kfi.1 

Note that in contrast to the more compact Eqs. (9)-( 13), in Eqs. (14) and 
(15) we differentiate “singular” disequilibria (like D, and Diiii) and non- 
singular ones. “Singular” disequilibria can be found using the formulas 
given by Barton (1986b). 

We study properties of equilibria of the model under consideration using 
regular perturbation techniques (see, for example, Fleming [1979] and 
Hastings [1986], where this approach was applied to multilocus models). 
Let p = pLo + EP’, ai = &a,!, bi = ebi, cjj = EC;, where E is a small parameter 
and the coefficients pO, ,u’, a(, bj, cij are of order one. With a larger value 
of E, the effect of selection within the population is larger. 

Write all unknown variables in Eqs. (14) and (15) as power series for 
allele frequencies 

and, for a typical disequilibrium coefficient of unspecified order, 

where pi,o and D ,. represent the allelic frequencies and linkage dis- 
equilibrium under random mating in the limit as selection vanishes. 
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Represent in a similar fashion quantities F;: 

=EF~,~+E~F~,~ +E~F;,~+ . . . . 

4C:,p,,, + ... 

(16~) 

and the mean fitness, 

Equilibria. At equilibrium the right-hand sides of Eqs. (14) and (15) 
equal zero. Myltiplying both sides of these equations by W, substituting 
(16), and equating the terms corresponding to the same power of E, we find 
algebraic equations from which perturbation terms can be easily found. In 
particular, we find that D ,. = 0 and that values pi,o are the solution of the 
linear algebraic system 

P~,oQ~,oFi.o G Pi.oqi.0 4 + Wp,.o + C 4c:k Pk.O ~0. 1 (17) 
k,k#i 

Below, we consider equilibria with only pi,oqi,o ~0. The quantities pi,” 
approximate the equilibrium allele frequencies p, with error of order E. 

The first-order perturbation for D, is 

Dij.1 =2c:i~;.oqi.o~j.oqj,o/(~orij). (18) 

A similar result has been obtained in a number of studies (Barton, 1986b; 
Hastings, 1986; Turelli and Barton, 1990; Zhivotovsky and Gavrilets, 
1990b). First-order perturbations for disequilibria of higher orders are 
equal to zero (see Appendix A). 

The first-order perturbations for allele frequencies are determined as a 
solution of the linear equations 

Fi, 1 Pi.oqi.0 = -2(qi,o - P,,o) C CL D,, 1. 
kfi 

(19) 
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The second-order perturbations for pairwise linkage disequilibria can be 
found from 

-rij(Di,,l '1 + Dg,2wO) + 2Pi,04i,0 1 'ik Djk,l + 2Pj,Clqf,0 C cik Dik,l 

k#i,/ k+r,t 

+2r,i(bl~i,,qi,,+blqj,oqi,o)D,i,, 

+2c~jCPi,04~,0P~,1(4/,0-P~,0) +~.j,O4,,OPi,1(4i.O-Pi,O) 

+ (1 - rcM4i.o - Pi,o)(qj,o - P~,o) D,, II= 0. (20) 

A similar analysis of second-order terms was carried out by Zhivotovsky 
and Gavrilets (1990b) and Barton and Turelli (1991). 

The second-order perturbations for allele frequencies can be found from 

+2(qi.0-Pi,0) C c~kDik,Z-4pi,1 C cikDrk,l 

k#i k#i 

+ C 1 Ckh Dikh.2 = 0. 

k,h#i 

(21) 

Equations (17)(21) can be used to determine pi and D, at polymorphic 
equilibria. The resulting estimates are of order s3. These errors can be 
neglected if c3 4 1. 

6. STABILITY OF EQUILIBRIA 

Now we consider an important property of the equilibria, namely, their 
stability. Here we deal with stability of allele frequency (16a) under weak 
selection only. Let E --f 0. Then the allele frequency equilibria for Eq. (14) 
are described by (17) in the limit pi -+ pi.0 under E -+ 0 (see Eq. (16a)). The 
dynamics of these frequencies near the stationary state can be described by 
the following reduced equation: dp,= F,p,q,/W. Let us represent it in 
differential form, like Crow and Kimura’s (1970, p. 192) approach using 
weak selection, 

where S, = 4c, (i # j), Sii = 2h,. The right-hand side of (22) is equal to zero 
if pi = 0, pi = 1, or F, = ai + xi S,, pi = 0 (these equalities are the same as 
(17)). If this limiting state is asymptotically stable, then the solution of (14) 
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is also stable for sufficiently small values of E, since only the first term in 
Eq. (14), Fipiqi, is of order E and the others are of order s2 or smaller 
(Appendix A). Hence, from the theory of differential equations, the stability 
of solutions of (14) is determined by properties of (22). 

We consider only isolated equilibrium states of (22). Each of these 
states is defined by the subdivision of the set of 12 loci into three 
subsets (Q,, Q2, Q3): the loci monomorphic for alleles ai( the loci 
monomorphic for alleles Ai( and the polymorphic loci (Q,). Following 
Barton (1986a), denote the numbers of loci in Q,, Q2, and Q3 as m, M, 
and v, respectively (m + M + v = n). Let us define the (n x 1 )-vector A with 
the components (A), = ai + CjE o2 S,(i = 1, . . . . n) and the (n x n)-matrix S 
with the components (S),= S, (i, j= 1, . . . . n). Define also the (v x 1)-vector 
A, and the (v x v)-matrix S, obtained from the vector A and the matrix S 
after deleting the rows and columns corresponding to i, j E Q, u Q,. 

In Appendix B we prove the following general result. 

Result 1. The equilibrium state (Qi, Q2, Q3) exists (i.e., all allele 
frequencies belong to the interval [0, 11) and is isolated if det S, # 0 and 
if, for all the components of the vector - SVP ‘A”, the following inequalities 
are true 

O<(-S,‘AJi< 1. 

In this state the polymorphic allele frequencies p*, ie Q,, are given by 

p: = (-S,r’A,),. 

This equilibrium state is stable if 

F,<O, for i~Qi, F,>O, for iEQ2, 

and the matrix S, is negative definite. 
Now consider the simplest special case of the general model (1) when 

contributions of all loci and all pairs of loci to the fitness are equal, i.e., 
when 

ai = a, bi = b, cii = c, for all i, j, (23) 

where a, b, and c are constants. The following result is true. 

Result 2. When the conditions in Eq. (23) hold, the number of 
polymorphic loci in a stable equilibrium state can be equal to only 0, 1, or 
n. A completely polymorphic equilibrium state (with v = n) exists and is 
stable if 

a > 0, b < 0, -lb//2<c<&. 
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In this state the equilibrium allele frequencies are 

p* = a/[4c( 1 - n) - 2h-J. 

The proof is given in Appendix B. 
Consider now the case when the coefficients c;, in (1) can be factored as 

cij = ycic,, (24) 

where ci and y are constants. Assume that all ci are different and that 
di = 2b, - 4ycf # 0 (di # d, for all i #j). Let d, > d, > . . . > d,. Define the 
following quantities 

Result 3. Given the equalities in Eq. (24), the completely polymorphic 
equilibrium state exists if 

O<(cp,ci-ai)/di< 1, i= 1 ) . ..) n. 

In this state, equilibrium allele frequencies are 

P,* = (CP~C, - ai)/di. 

This equilibrium state is stable if the following inequalities hold: 

d, < 0, ‘PI > -1, if y > 0, 

d, <O 

Or d,>O,d,<O,q,< -1 ’ 
if y < 0. 

The proof is given in Appendix B. 

7. QUANTITATIVE GENETIC MODELS 

In this section we consider a number of models of selection on 
quantitative characters described by the fitness function (1). 

Model I: Stabilizing Selection on One Character with Additive Genotype 
Values 

Consider first the standard model of an additive character assuming that 
the contibution of allele Ai equals cri/2 and that the contribution of allele 
ai equals -ai/2. In our notation 

x = 1 cci(li + 1; - 1) + e, (25) 
I 
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where e is a random environmental deviation with zero mean and a 
variance E. Describe stabilizing selection by a quadratic fitness function 

w(x) = 1 - S(X - e)‘, (26) 

where 8 is an optimum phenotype and s is the parameter measuring the 
intensity of selection (s > 0). The mean fitness of the genotype (I, I’) in this 
model is 

I 

2 

w l)-6’ . (27) 

Let E be constant. Rewriting (27) in the form similar to (l), we define the 
equations expressing parameters h, ai, bi, and cii in terms of the parameter 
of the model under consideration 

aj=s 
( 

2a,~cXj-cc;+2aitI ) 
i > 

hi= -xx;, 

(j > 

2 
(28) 

co = -saiffj, ,M=l-sE-s Ia,+8 . 

The form of cii suggests that inferences about equilibrium states of this 
model can be drawn with the help of Result 3. It is easy to see that 
di = 2saf > 0 for all i, and, hence, in a stable equilibrium state, the number 
of polymorphic loci cannot be greater than one. 

Model II: Stabilizing Selection on Multiple Additive Characters 

Consider a generalization of model (25) for the case of k pleiotropically 
connected characters. Let the value of the jth character be defined by an 
additive model 

xi=Cai,,(l,+l:-l)+ej, (29) 

where N,,~ is the contribution of the ith locus to the jth character and ej is 
a random independent environmental deviation with zero mean and a 
constant variance. Assume that quantities LX~,~ can be factored as 

ol,,, = kjai, (30) 

where ki, C(~ are constants. Equality (30) means that the ratio of contribu- 
tions of any two different loci to the same trait depends only on these loci 
and does not depend on the character under consideration. 
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Describe stabilizing selection by a fitness function (Tachida and 
Cockerham, 1988) 

W(X,) . ..) x/J = 1 -c sj(xi- f$)2, (31) 

where 0, is a component of a vector 8 = (0,) . . . . 0,) of optimal values, sj > 0. 
Note that the use of (31) instead of w=1-(x-0)TV~1(~-9), where 
x = (Xl) . ..) x~)~ and V is a positive definite matrix, does not cause any loss 
of generality. 

It is easy to show that in this model the parameters b, and c,, of fitness 
function (1) can be expressed as 

b;= -(LX;, cji = -~a$?,, 

where g = C, s, ki > 0. Thus di > 0 for all i in this model as in Model I 
and, hence, if (30) holds, in a stable equilibrium state the number of 
polymorphic loci cannot be greater than one. In general, selection on 
multiple characters can maintain polymorphisms at more than one locus 
(Hastings and Horn, 1990). Result 1 may be used to confirm the existence 
of such polymorphisms for certain parameter sets if CX~, # k,jai. 

Model III: Genotype-dependent Stability of Development 

Consider again stabilizing selection on an additive quantitative character 
(Eq. (25)-(26)), but now assume that the variance E of the random devia- 
tion e is different for different genotypes. This variance can be interpreted 
as a quantitative measure of the developmental sensitivity of the genotype 
to the heterogeneity of the environment. The assumption that genotypes 
are different with respect to environmental variance is also one of the 
simplest ways to take account of genotype-by-environment interaction. 

Suppose that the dependence of E on the genotype is defined by the 
additive function with dominance 

E=Eo+~[~i(~i+~I'-1)+h;(~,+~~-2~;~/)], (32) 

where /Ii is the contribution of homozygous loci A,A, and hi is the con- 
tribution of heterozygous loci A,a,. The contribution of homozygous loci 
aia, equals -pi. E, is a positive parameter, such that E > 0 for all 
genotypes. In this model, the mean fitness of a genotype (f, I’) is defined by 
Eqs. (27) and (32). Assuming for simplicity that all loci have equal effects, 
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i.e., that aj = ~1, pi = /?, hi = h, and i = 1, . . . . n, the equations connecting the 
parameters of (1) with the parameters of the model under consideration are 

a=sa*(2n-1+26-T,), 

b = -sc?( 1 - T*), c = --SC?, 
(33) 

where T, = (j? + h)/Cr*, T2 = h/Cr2, 6 = e/cl. 
Using Result 2, the constraints on T, and T2 necessary for the main- 

tenance of polymorphism at all loci are given by 

T,<2n-1+26, T,< 1, 

T, -2T,> 1 -2n+26. 
(34) 

Note that the region of stable polymorphism is “wider” than the region of 
overdominance in the character. 

Model IV: Lerner’s Model 

In this section, we consider a special case of the model described above, 
which can be named after Lerner since it reflects Lerner’s (1954) hypothesis 
of the increase in “developmental homeostasis” with the number (H) of 
heterozygous loci in the genotype. Consider an additive character (25) 
under stabilizing selection (26). Assume that variance E of the environ- 
mental deviation is a linear function of the number of heterozygous loci, 
H: E = ui + u,H. In our notation, H=Ci(li+ 1/ - 21,1/). It is easy to see 
that this model is a special case of Model IV and that the parameters a, 6, 
and c can be expressed by (33) with T, = u2/a2 and T2= u2/c1*. The 
constraints on u2 necessary for the maintenance of polymorphism can be 
obtained from (34). 

Model V: “Corridor Model” 

In this section we consider a model whose analogues have been 
investigated in the context of studies of the influence of genetic constraints 
on adaptive evolution (Wagner, 1984, 1988; Burger, 1986). Assume that 
selection acts on two pleiotropically connected quantitative characters. The 
first, x, is additive “within” and “between” loci as in (25), and the second, 
y, is additive “between” loci, but with “dominance” within loci 

y=c [fl;(Z,+l/-l)+hi(li+l,‘-21,rl)]+e,. (35) 

Let the character x be under stabilizing selection and the character y be 
under directional selection, 
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The easiest way to describe the directional selection is to use a linear 
fitness function 

W(Y) = 1+ ty, (36) 

where t is a parameter. The interaction of these two modes of selection can 
be described by the fitness function in the form 

which in the case of weak selection (s, t 6 1) is approximated by 

w(x, y) = 1 - s(x - 0)’ + ty. (37) 

It is obvious that this model has the same properties as Model III 
and that all the qualitative results concerning the maintenance of 
polymorphism remain valid. In particular, the conditions for the main- 
tenance of variability in the symmetrical case (with cl;= CI, pi = /I, and 
hi = h) are given by (34) with T, = -t(/? + h)/sa2, T, = -th/sa2. 

Model VI/I: Stabilizing Selection and Pleiotropic Overdominance 

Consider again Model I; assume that each locus contributes to a quan- 
titative trait and that each heterozygous locus increases fitness by adding 
a fixed quantity t. This model accounting for overdominance was proposed 
by Bulmer (1973) (see also Gillespie, 1.984). It is easily verified that the 
contribution of all n loci to the fitness caused by overdominance can be 
expressed as t Ci(li+ 1: -2/J/) and that the general fitness may be 
represented by (37) with y as in (35) with pi= 0 and hi= 1. Thus, this 
model can be considered a special case of Model V. 

Model VII: Additive Characters under Directional Selection 

The simplest way to describe directional selection on a single trait is to 
use the linear fitness function (36). A generalization of this fitness function, 
which accounts for the case of multiple characters, is a quasilinear function 
of the form 

4x,, . . . . x,)= 1 +&x,+C&x,x,, 
R R#h 

where k is the number of characters, and t,, tRh are constants. Assume that 
values of the characters are determined by the additive model (29) with 
proportional contributions of the loci to the characters (Eq. (30)). It can be 
shown that in this case the parameters of (1) can be expressed as 
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where 5 = C C g + h tgh k, k,. Using Result 3, one can show that if E < 0, then 
di > 0. If E > 0, then d, < 0, but the condition ‘pi > -1 is not satisfied. 
Hence, in stable equilibrium states, the number of polymorphic loci cannot 
be greater than one. 

Model VZZZ: Epistatic Character under Directional Selection 

Consider a quantitative character determined by additive, dominant, and 
pairwise additive-by-additive epistatic effects. In this case, the relation 
between the genotype value and the indicator variables Ii, 1: is determined 
by a function of the form (1). Assume that the character is under direc- 
tional selection, and describe this selection by a linear fitness function (36). 
It is obvious that in this model, under conditions stated in Results 1-3, a 
stable polymorphic state may exist and be stable. 

8. SOME IMPLICATIONS 

Induced Cis- Trans Effect 

Model (1) assumes the absence of cis-trans effects on fitness, i.e., fitness 
is not changed if allelic genes are interchanged. However, for induced 
litnesses, this is not true in general (Turelli, 1982). The induced cis-trans 
effects in two-locus marginal systems can be characterized by the difference 
between induced litnesses vi4 and vZ3 of two-locus marginal genotypes 
AiAj/a,aj and A,a,/aiAj. In general, induced cis-trans effects can be 
characterized by differences between induced litnesses of m-locus genotypes 
with the same set of genes but with different distributions of these genes 
between paternal and maternal gametes. In our model, these effects are of 
order .s*. To see this, just note that induced cis-trans effects are propor- 
tional in both linkage disequilibria and parameters ai, b,, and cii. All these 
quantities are of order E, and hence, the products of these terms are of 
order 6’. Thus, in our model, induced cis-trans effects are rather small. 

Induced Overdominance 

At an equilibrium of a multilocus model, the induced litnesses of single- 
locus marginal genotypes often satisfy the conditions of overdominance, 

vA,u, ’ v A,A,, v,,,,. (38) 

Several examples of marginal underdominance found by Hastings (1982) 
demonstrate that this is not a general principle. 

Using the estimates given above, it can be shown that at any 
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polymorphic equilibrium (piqi # 0) the induced litnesses of single-locus 
genotypes (13) can be represented as 

UA,A,= W + 2biq? +0(-S*), U,,,, = W + 26jpf + O(&‘), 
(39) 

V /j,o, = @ - 2b,q, + o(&‘). 

We have shown elsewhere that a necessary condition for the stability of 
a completely polymorphic equilibrium in the symmetric case (a; = a, bi = b, 
cij= c) is b < 0 (Result 2). Hence, in the symmetric case, inequalities (38) 
are true at least to the leading order; i.e., for stability of multilocus 
polymorphism for small F, it is necessary for the induced fitness of a 
heterozygote to be large than the induced litnesses of both homozygotes. 

Effect of Disequilibrium on Quantitative Variability 

It is well known that the additive variance of quantitative characters can 
be represented in the form VA + CL, where VA is due to allele effects and C, 
is due to linkage disequilibrium (Bulmer, 1974; Weir et al., 1980). For the 
model (25), VA = xi 2pjqiaf and C, = C Ci+j 2aitxjDij. Results of a num- 
ber of numerical simulations (Lewontin, 1964; Bulmer, 1976; Zhivotovsky, 
1984) show that the reduction of genotypic variance due to the linkage 
disequilibrium generated by stabilizing selection can be significant even if 
selection and linkage are not extremely strong. 

Let us consider expression (20) for the second approximation of linkage 
disequilibria. In two partial cases, this cumbersome formula is simplified. 
The first one corresponds to the situation when pi,0 = qi,O for all i, i.e., when 
genie variance reaches its maximum. In this case, first-order perturbations 
for allele frequencies are defined as a solution of a linear system F,, , = 0 
and hence pk,, = 0 for all i (see the definition of F;,, in (16~) and (19)). 
Accordingly, it follows from (20) that 

Dti.2 = -D, 1 C@, - 2(blPi.,qt.o + blp,.,qi,,)]/@, 

+ C2Pi.oqi.o C CL D,, 1 
k # i., 

+ 2Pj.oqj.o C c;k D,, I l/(@orii). 
k # 1. / 

(40) 

Similar simplifications occur when the number of loci is large (with cji of 
order l/n in order to fix pi.O as n -+ cc). In this case, D,, are of order I/n 
(see (18)), the right part of (19) has the same order, and hence pi,, are of 
order l/n. Therefore, the last terms in (20) can be neglected in comparison 
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with the others, and we arrive at Eq. (40). Since D,= ED~,~ + 
c2Dv,, + O(s3), using (18) and (40), in both these cases, 

Dij= -(E*I)(ED~,I)/@o + 2(&c;) Pi,oqi,oP,,oqj,ol(Wori,) 

+ Qi,oqi,o C (~ci/c)(~Djk.~) 
[ k#i,j 

+ 2Pj.oqj.o 1 (ECik)(EDik,l) (SO~U) 

k#i,j I/ 
+2C(&b:) Pz,oqi,o+ t&b,!) Pj,oqj,oI(&D~j,,)/Wo+O(E3), 

Substitute now D, for ED~,~ and pi for pi,o. The error due to this 
transformation is of order a3. Then, transfer the first term of the right-hand 
side into the left side and substitute W for the multiplier (W, + eWi) of D,. 
Multiplying the resulting equality by W, and writing cij instead of EC;, we 
find that with an error of order s3, the following equality is true: 

D,‘= 2CqP;qiPjqj+2Piqi 1 CikD/k+2Pjqj 1 
( 

CjkDik 
)I 

rk (41) 
k#i.j k # i,.i 

+ z(biPiqi + b,Pjqj) D,. 

We use this equation to compare our estimates and those of Bulmer. 
Consider Bulmer’s model of an additive quantitative character under 
stabilizing selection described by Eqs. (25) and (26). The stationary state in 
this model is unstable (Results 2 and 3 and Model I), but it should be 
noted that the allele frequencies can be almost unchanged for a long time 
(Lewontin, 1964; Nagylaki, 1976; Gavrilets and Zhivotovsky, 1989; 
Zhivotovsky and Gavrilets, 1990a; Turelli and Barton, 1990). Assume that 
all frequencies are equal (pi = p) and let allele effects also be equal (ui = a). 
Note that in this model bi= -~a*, cii = -sa*. Now multiply both sides of 
(41) by 2a2 and sum over all combinations of i and j. If we neglect the 
contribution of the last term in (41), then the resulting equation can be 
approximated by 

rhWCL= -s(V~+2V,C,), (42) 

where r,, is the harmonic-mean recombination rate. This equation 
demonstrates that quantitative genetic variability is reduced under stabiliz- 
ing selection. 

Equation (42) is very similar to the equation derived by Bulmer (1974, 
Eq. (12)) for the case of a quadratic fitness function using the infinitesimal 
model and regression arguments. The only difference is the absence of the 
term -SC: from the right-hand side of (42). The obvious next step in 
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describing the effects of disequilibrium is calculating third-order perturba- 
tions. It seems that in the cases considered in this section (n + cc or 
p, = OS), the incorporation in the analysis of third-order terms would result 
in an equation for C, of the form (42), with additional terms on the right- 
side proportional to SC:. It suggests that the analysis of third-order terms 
is important and perhaps would be sufficient in most cases. 

But it should be concluded that Bulmer’s equation is true only for 
extremely restricted models (additive characters, equal “weights” of the 
loci, equal allele frequencies, unstable polymorphic state). In other situa- 
tions, exact genetic models have to be considered to describe selection on 
quantitative characters. For instance, quadratic selection (26) on additive 
characters (25) leads to Eqs. (14) and (15). 

9. CONCLUSION 

Our results show that a simple and obvious generalization of a standard 
additive model that accounts for pairwise additive-by-additive epistasis 
considerably weakens the conditions necessary for protected poly- 
morphisms. In particular, overdominance per se is no longer necessary. 
This general approach makes it possible to study a number of quantitative 
genetic models describing both stabilizing selection on an additive charac- 
ter and various additional factors. First, we have considered stabilizing 
selection on an additive character with unequal contributions by different 
loci. We have shown that at the stable state, the number of polymorphic 
loci cannot be greater than one. This generalizes the results obtained 
for the case of equal contributions of loci (e.g., Barton, 1986a). The 
assumption that stabilizing selection acts not on a single character but on 
multiple pleiotropic traits with proportional contributions by different loci 
(Model II) also does not lead to stable polymorphic equilibria at more 
than one locus. Note, however, that Gimelfarb’s (1986) and Hastings and 
Horn’s (1990) results suggest that, in the case when contributions of 
different loci are not proportional, such equilibria can be expected. Result 1 
may be used to find these equilibria. 

A polymorphism can be protected if the environment is heterogeneous 
and if genotypes differ in their sensitivity to environmental conditions, i.e., 
if there is genotypeenvironment interaction in this sense (Models III and 
IV). In these models, we used the environmental variance E as a charac- 
teristic of such sensitivity. In Model III, the variance E is taken to be a 
quantitative character with some degree of dominance. In Model IV, it is 
assumed that E depends only on the number of heterozygous loci. This is 
a formalization of Lerner’s (1954) hypothesis of increased “development 
homeostasis” in multilocus heterozygotes. Similar conclusions about the 
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possibility of maintaining variability in the presence of genotype-environ- 
ment interaction were obtained on the basis of numerical simulation 
(Lewontin, 1964) and by analytical methods (Gillespie and Turelli, 1989). 
It should be emphasized that our Models III and IV are more general than 
that of Gillespie and Turelli, because the former account for contributions 
to fitness attributable to deviations of the character from the optimum. 

Another new model with stable polymorphic states is the “corridor” 
model (Model V). In this model, stabilizing selection on an additive trait 
acts simultaneously with directional selection on another character 
pleiotropically connected with first. Analogous models have been studied 
intensively in the context of investigations of the influence of genetic con- 
straints on adaptive evolution (Wagner, 1984, 1988; Burger, 1986). Unlike 
these, in our models the basic state variables are allele frequencies and not 
the moments of phenotypic distributions. This property allows us to avoid 
assumptions concerning the phenotypic distributions (such as normality 
and constancy of covariance matrices), the validity of which, generally 
speaking, must be verified. 

The main accomplishments of this paper, we believe, are the new models 
in quantitative genetics, the conditions of existence and stability of multi- 
locus polymorphism under additive-by-additive epistatic selection including 
stabilizing selection on additive characters, exact formulas for the induced 
litnesses that are not based on any approximations (some approximations 
can lead to inconsistencies in estimates of selection coefficients (Walsh, 
1990)), and the second-order estimates of allele frequencies and pairwise 
linkage disequilibria. The estimates of allele frequencies and pairwise dis- 
equilibria presented above describe equilibria of genetic systems with an 
arbitrary number of loci and do not use any symmetry constraints on locus 
contributions. Although our dynamic equations appear less general than 
those of Turelli and Barton (1990) because of the special form of our fitness 
function (1) our model, unlike theirs, allows us to directly calculate allele 
frequencies and pairwise linkage disequilibria, to formulate the conditions 
of stability of multilocus polymorphism, and to investigate more 
thoroughly the influence of selection on quantitative genetic variability. 

APPENDIX A 

Define some subset S, containing m elements of the set I= { 1, . . . . fl} of 
n loci. Then, as in Section 2, the m-locus gamete C(C’) is defined by values 
I,,c(I,,.,) of corresponding indicator variables, g E S,. Here we derive 
general formulas for induced litnesses u~,~. and vc of the m-locus genotype 
(C, C’) and m-locus gamete C. 
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The fitness function (1) can be considered as a partial case of a more 
general fitness function, 

where y and rr are some given functions of subsets, the summing is over all 
A, BE S, and S is a set of all subsets of set I. As in the case for fitness 
function (1 ), in (Al ) it is assumed that the effects of sex and c&tram 
effects are absent. 

The induced fitness v~,~, of the genotype formed by the m-locus gametes 
C and C’ is obtained by averaging over all genotypic combinations making 
up these two m-locus gametes, weighted appropriately by fitnesses and 
frequencies. This fitness can be considered the conditional mean of random 
variable (Al ), 

V .c,c,=E{w~,,~I~,=I,,.;~b=~h,~, c&L), (A21 

where E is the expectation operator. 
Consider some term of sum (Al ) 

Because of the independence of li and 1; (owing to the randomness 
of matings), the contribution of this term to the mean fitness of the 
population is 

where zA = E(E, = 1, g EA} = E{n,, AIg} is the marginal frequency of the 
m-locus gamete, such that f, = 1 as g E A. 

The contribution of (A3) to the induced fitness (A2) can be represented 
as 

where we use a shorter notation for conditional means, e.g., 

By the definition of conditional mean, 
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Let us define an analogue of pairwise linkage disequilibrium: 

D .,,=E(I,=l,g~Aandl,=l,,,g~S,}-z,z,. (A7) 

Using this variable and equality (A4), the induced fitness (A2) can be 
written as 

V c,c’ = @ + 1 YA,BC( zA DB,, + zB DA,,)lzc- 

+ @A DB,C + zB D,,c)/Zc, 

+ (DA,, DB.r + DA,,, DB,c)lzcz~l~ C.48) 

Accordingly, the induced fitness of m-locus gamete C is 

VC=W+CYA,B(ZAD,,.+ZBDA,~)IZ~. (A9) 

In fitness function (l), one can distinguish four different types of terms 
(A3). In the first case, set A consists of a single locus (A = k), set B is 
empty (B=O), ~~,~=a~, zA = pk, zB= 1, DA,,= D,,,, and D,,.=O. The 
contribution of these terms to u~,~, is 

c ak(Dk,./zc + Dk,C’/~C4 

In the second case, A = B= k, yA,B= b,, zA = pk, zB= pk, DA,,= D,,., 
D B.C- - Dk,CY and the contribution is 

12b,(Pk DwIzc+ Pk Dk,c/%+ Dk.c-Dk,c/ZcZc). 

In the third case, set A consists of two different loci (A = k/z), set B is 
empty, YA,B=Ckh,ZA=PkPh+DkhrZB=l,DA,C=Dkh,C,DB,c=O, and the 

contribution of these terms can be represented as 

;; Ckh((PkDh,C+PhDk,C+Dk,h,C)lZC 

+ (Pk Dh,c + Ph Dk.c + Dk,h,d+}, 

where Dk, h, c is an analogue of the disequilibrium among three loci 

D A,B,C=E{I~=l,g~Aandl,=l,g~Bandl,=l~,~,g~S,} 

-zA DB,c-~gDA,C-~C.DA B-zAzBzc. (A101 

653.42’74 
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Finally, in the fourth case, A = k, B= h (k # h), Y,,,~= ckh, z,,, = pk, 
zB = p,,, D,,, = D,.,, DBxc. = D,,,, and the contribution is 

~~~C*C~(PI.D~,,+P~D~,.)I~,+(P,D~.,~+P,D,,,.)I~,~ 

+ CD,,. Dh,c, +D,,r D,,c)/Z.Z,-). 

These enable us to represent the induced fitness of the m-locus genotype 
(C, C’) as 

vc,c’ = tl, + 
i 

1 Fk D,,, + 
k 

11 Ckh Dk,u]/Zc 

kfh 

+ ~fiDD,,,+~h&h,c’ 
i 

zc 

k k#h 

Dk,., + c c Ckh 

k#h 

x(Dk,~D/z,r+~k,~.‘Dh,c) zczc.. (All) 

Accordingly, the induced fitness of the m-locus gamete C is 

“c=@+ ~Fk‘kk,c+~t]CkhDk,h.C. 
i 11 

zc. (A121 
k k#h 

One-Locus Marginal Systems 

Let set S, consist of a single locus, e.g., the ith. Then, it follows from 
definitions (A7) and (AlO) that 

Dk,c=Dik, Dk,h,c=Dikh, z(. = pi. (Af3) 

After substituting these formulas into (A12) and making obvious transfor- 
mations, we get Eq. (9). 

Two-locus Marginal Systems 

Let set S,,, consist of a pair of loci, e.g., the ith and jth. Then, 

Dk, c = Pi D, + Pj Dik + Dtik 3 

Dk,h,C= Pi Dikh + Pi Dikh +Diikh-DiiDkh, 

z~.= pip, + D,, (Af4) 

and using these formulas we get (10). The formulas for v14 and vz3 can be 
derived in a similar fashion. 
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Disequilibria of Third and Fourth Orders 

The dynamic equations for allele frequencies and pairwise disequilibria 
have terms proportional to third- and fourth-order disequilibria. Here we 
show that these terms are of order E* and, hence, can be neglected in our 
analysis, since in Eqs. (14) and (15) they are multiplied by terms of order 
E. We present only qualitative arguments and do not write down the corre- 
sponding dynamic equations for D, and D,,, because these equations are 
very cumbersome. 

Consider a third-order disequilibrium D, with i#j# k. This dis- 
equilibrium is generated by selection and is destroyed by recombination. 
Let z, be the marginal frequency of gamete (A,A,A,). Then the change in 
D,jk caused by a single act of selection can be described by 

As Dqk = AJZI - (P; A, Dlk + PI As DS + pk A.v D, 

+(pjpk+Djk)A,P,+(pipk+D,)A.sPj 

+(pip,+D;,)A,Pk+ -+ (Al51 

where we omitted higher order terms like A, pi A, Djk, piA, pj A, pk, and 
Asp, Asp, Asp,. This equation follows from the definition of D,. The 
change in the marginal frequency -7, is 

A Jz1 = (u, - W) z,/w, (A161 

where V, is the induced fitness of the three-locus gamete (A,A,A,), which 
can be calculated using (A12). 

Using Eqs. (A12), (A15), and (A16), it can be shown that 

A,D;jk= CF,(D,,-Di~Djk-Dj~Dik-DkRDij) 
i R 

+ 11 Cgh(Dzjkgh - Dgh D, 
gfh 

- Di, Dk,h - D,k D,gh - D/c, Dig,) w. (A171 

As in Eq. (15), the general change in third-order disequilibria is 

ADilk = -r,jk Dl,k +A., Dijk + Ar Diik, (‘418) 

where r@ is the rate of a recombination process among three loci i, j, k, 
A,D, denotes other terms that are due to the recombination, analogous to 
the terms in Eqs. (8) and (12) for pairwise disequilibria. Every term of 
d,D,,, and d,DVk is the product of either F, or cKh, that are of order E, 
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and either pairwise disequilibria that are of order E or higher order 
disequilibria. 

Using a similar approach, it can be shown that analogous relationships 
are valid for fourth-order disequilibria. Hence, at stationarity under 
selection and recombination, the reduced equations for these disequihbria 
are 

where E, and 8, are of order E or smaller. One can see that third and fourth 
disequilibria at the stationary state are order s2. Therefore, their influence 
on pairwise disequilibria must be order s* and can be neglected in 
Eqs. (17)-(21). 

APPENDIX B 

Proof of Result 1. The polymorphic allele frequencies p,*, i E Q,, are 
defined as a solution of a linear algebraic system 

Ui + C Sjj + 1 SjjPl =O, iE Q3. (Bl) 
iGQz icQ3 

The conditions for the existence of polymorphic equilibria are straight- 
forward. 

The stability of the state (Q,, Q2, Q3) is defined by the signs of the real 
parts of the eigenvalues of the (n x n) matrix R = (8/8p,(dpj/dr)) with the 
diagonal elements 

VQa) 

and the nondiagonal elements 

d, = piqisi,/M’. (JQb) 

It can be shown that the above stability conditions are equivalent to the 
condition that the matrix R with the elements 

Rii=Fi, R,=O as iEQ,, j#i, Wa) 

Ri,= -F,, R,,=O as iEQ2,j#i, Wb) 

R, = Si,, R,j = S, as iEQ3, j#i (B3c) 

is negative definite. 
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Of the n eigenvalues of this matrix, m eigenvalues are equal to F, (i E Q ,), 
A4 eigenvalues are equal to - Fi (i E Q2), and v eigenvalues coincide with 
the eigenvalues of matrix S,,. 

Proof of Results 2. In the symmetrical case, the polymorphic equi- 
librium frequencies are defined by 

p*= 
a+4cC p,* 

4c-2b . 034) 

Hence, the equilibrium state (m, M, v) exists and is isolated if 

(i) 4c#2b, 

(ii) sign(a + 4c C pi) = sign(4c - 2b), 

(iii) la+4cCpjl<14c-2bl. 

The stability of this state is determined by the eigenvalues of the matrix R 
with the elements 

a+4cxpj, R,=O as ~EQ,, if j, Wa) 

Rij= (4c-2b)- a+4cxp. ,R,=O, 
( J) 

as iEQ,,i#j, Wb) 

2b, R, = 4c, as ieQ3, i# j. WC) 

These eigenvalues are 

i 

a+4CCpj (m times) Wa) 

(4c-26)-(a+4cxpj) (Mtimes) Wb) 

‘= 2b (once when v = 1) WC) 
2b-4c (v - 1 times when v > 1) (B6d) 
2b+4c(v- 1) (once when v 1 1). We) 

Let the state (m, A4, v) with v > 1 and m > 0 and/or A4 > 0 exist; i.e., the 
conditions (i), (ii), and (iii) are satisfied. The necessary condition for the 
stability of this state is 2b - 4c < 0. But in this case, it follows from (ii) and 
(iii) that (B6a) and (B6b) must be positive. Hence, the equilibrium states 
with v > 1 and m > 0 and/or M > 0 will be unstable. 

Consider a completely polymorphic equilibrium state with v = n, 
m = M= 0. The corresponding allele frequencies can be obtained from 
Eq. (B4), and the conditions for existence and stability follow from (i), (ii), 
(iii) and (B6). 
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Proof of Result 3. When (24) holds, the matrix S has the form 

S=D+4ycc’, 037) 

where D is a diagonal matrix with the elements di = 2b, - 4ycf, 
c = (c,, . . . . c,)‘. The inverse matrix S’ is given by the formula 

S-‘=D-‘-D-‘ccTD-‘(4y/(l +rp,)), (B8) 

where ‘pi =4ycTD-‘c = C 4ycF/di. The conditions for the existence of 
polymorphic states can be obtained from Result 1 and (B8). 

To draw the conclusions about stability of different equilibrium states 
using Result 1, we must determine the eigenvalues of matrix S,. This matrix 
has the form (B7). The eigenvalues of S,, satisfy 

(D, + 4yc,x,T) v = Av, (B9) 

where v is the eigenvector. From this equation one obtains the equality 

v = (AI - D,,)-’ 4yc,(c,Tv), @lo) 

where I is an identity matrix. Multiplying (B9) from the left by the vector 
C,T, substituting vector v by (BlO), and cancelling the scalar (c,‘v), we 
determine after some algebra the characteristic equation for the matrix S: 

i,c,, c?l(A - 4) = l/47. P11) 

The conditions for the negativity of eigenvalues are obtained by using the 
function y = C cf/(;l- di) with the line y = 1/4y lying to the left of the 
ordinate. 
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