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ABSTRACT
I formulate and study a series of simple one-locus two-allele models for maternal (parental) selection.

I show that maternal (parental) selection can result in simultaneous stability of equilibria of different
types. Thus, in the presence of maternal (parental) selection the outcome of population evolution can
significantly depend on initial conditions. With maternal selection, genetic variability can be maintained
in the population even if none of the offspring of heterozygous mothers survive. I demonstrate that
interactions of maternal and paternal selection can result in stable oscillations of genotype frequencies.
A necessary condition for cycling is strong selection.

MATERNAL effects refer to situations in which an effects. An extreme case of fitness that depends entirely
on the mother’s genotype at a single diallelic locus wasindividual’s phenotype depends (besides other

factors) on the phenotype of its mother. Well known considered by Wright (1969, pp. 57–59) and Nagylaki

(1992). Wright (1969, pp. 148–149) and Wade andto biologists for decades, maternal effects have been
considered as a nuisance that makes interpretation of Beeman (1994) studied single-locus two-allele models

in which offspring of a specific genotype with a parentbiological data more difficult and that should be re-
moved from experiments if possible (Falconer 1989). of a specific genotype has a reduced fitness.

Here I consider the dynamics of a series of simpleRecent years, however, have been characterized by a
growing realization that maternal effects may actually one-locus two-allele models for maternal (and paternal)

selection. These models are closely related to those in-be very important in evolution (e.g., Cheverud and
Moore 1994; Wade and Beeman 1994; Fox and Mous- troduced and discussed by Wade (1996) who, however,
seau 1996; Roosenburg 1996; Rossiter 1995, 1996; did not consider the dynamic behavior. Although the
Sinervo and Doughty 1996; Wade 1996; Wolf et al. models studied in this article probably oversimplify real
1997). This realization is coming partially from theoreti- situations, they may be useful in identifying different
cal models that have shown that maternal effects can dynamic possibilities and important parameters and in
result in very interesting and sometimes counterintu- training our intuition about more complex (and realis-
itive evolutionary dynamics (Cheverud 1984; Kirkpat- tic) systems.
rick and Lande 1989; Lande and Kirkpatrick 1990;
Orr 1991; Ginzburg and Taneyhill 1994; Wade and
Beeman 1994). The concept of maternal effects can be A MODEL FOR MATERNAL SELECTION
generalized to the concept of “kin effects” (Cheverud

I consider a single randomly mating diploid popula-1984; Cheverud and Moore 1994) incorporating the
tion with nonoverlapping generations. I assume thateffects of any relatives on an invidivual’s phenotype.
fitness (viability) of an individual depends on its geno-“Maternal selection” is one of various maternal effects.
type at a single diallelic locus as well as on the genotypeThis notion describes situations in which an individual’s
of its mother at this locus. Let i 5 1, 2, 3 correspondfitness depends (besides other factors) on the pheno-
to genotypes AA, Aa and aa, respectively, and let wi,j betype of its mother (Kirkpatrick and Lande 1989). Most
the fitness of an individual with genotype i raised by aof the theoretical work on the evolutionary conse-
mother with genotype j . Genotype frequencies are equalquences of maternal selection has been done within a
in both sexes after one generation of selection andquantitative genetics framework (e.g., Dickerson 1947;
segregation. Let x , y and z be the frequencies of adults

Villham 1963, 1972; Falconer 1965; Cheverud 1984;
with genotypes AA, Aa and aa, respectively. The nine

Kirkpatrick and Lande 1989; Lande and Price 1989;
mating types and the frequencies of the corresponding

Lande and Kirkpatrick 1990). There have been only
matings and offspring are given in Table 1. Using thisa handful of theoretical studies considering major locus
table, the adult frequencies x9, y9 and z9 in the next
generation are defined by
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TABLE 1 than the average of the fitnesses of heterozygotes having
a heterozygous mother and a homozygous mother. Re-Mating types and offspring
versing both inequalities results in the conditions for pro-
tecting polymorphism in this model. Analysis of attractorsMating types Offspring

Frequency of (1) other than the monomorphic equilibria requires
Female Male of mating AA Aa aa additional simplifying assumptions about fitnesses wij .

Some special simplifying cases are examined below.AA AA x 2 1 0 0
Aa xy 1/2 1/2 0
aa xz 0 1 0

Symmetric model for maternal selection
Aa AA xy 1/2 1/2 0

A standard approach for simplifying analysis of popu-Aa y2 1/4 1/2 1/4
aa yz 0 1/2 1/2 lation genetic models is to introduce some symmetry in

the model. In this section, I will assume that fitnessesaa AA xz 0 1 0
wi,j are symmetric in the sense that w1,1 5 w 3,3 , w1,2 5Aa yz 0 1/2 1/2
w3,2 , w2,1 5 w 2,3 . This symmetric case can be describedaa z 2 0 0 1
by the following fitness matrix:

Maternal genotype

Individual genotype AA Aa aawy9 5
1
2
(w 2,1 1 w2,2)xy 1

1
2
(w2,2 1 w 2,3)yz

AA a b —
Aa g d g

1 (w2,1 1 w 2,3)xz 1
1
2
w 2,2y 2, (1b)

aa — b a

where a, b, g and d are nonnegative. Note that neither
wz9 5 w 3,3z 2 1

1
2

(w3,3 1 w 3,2)yz 1
1
4

w3,2y 2 , (1c) genotype AA can have a mother with genotype aa, nor
can genotype aa have a mother with genotype AA. This

where the mean fitness of the population w is such that symmetric model implies that fitnesses of homozygotes
x9 1 y 9 1 z9 5 1. If wi,j 5 wi for all i ,j , that is, if the raised by homozygous mothers are identical, fitnesses
fitness of an individual depends only on its own geno- of homozygotes raised by heterozygous mothers are
type, one has a classical model of “pure” viability selec- identical and fitnesses of heterozygotes raised by homo-
tion. If wij 5 wj for all i ,j , that is, if the fitness of an zygous mothers are identical. The dynamic equations
individual depends only on the genotype of its mother, (1) become
one has a model of “pure” maternal selection consid-
ered by Wright (1969) and Nagylaki (1992). In both wx 9 5 ax2 1

1
2

(a 1 b)xy 1
1
4

by 2, (3a)
models, the system evolves to a single polymorphic equi-
librium if there is overdominance (w 2 . w1, w 3) and to
a monomorphic state otherwise. I will be interested in wy9 5

1
2
(g 1 d)(x 1 z)y 1 2gxz 1

1
2

dy2 , (3b)
the model dynamics when both individual and maternal
genotypes affect individual fitness.

wz 9 5 az2 1
1
2

(a 1 b)y z 1
1
4

by 2. (3c)The dynamic system (1) has two monomorphic equi-
libria (1, 0, 0) and (0, 0, 1) corresponding to the fixation
of genotype AA and aa, respectively. Conditions for sta- In this symmetric model, the conditions for stability of
bility of these equilibria, which can be found in a monomorphic equilibria, which have been given above,
straightforward manner, are given in simplify.

Result 1 (stability of monomorphic equilibria): Mono- Result 1a (stability of monomorphic equilibria): Mono-
morphic equilibrium (1, 0, 0) is locally stable if morphic equilibria (1, 0, 0) and (0, 0, 1) are (simultane-

ously) locally stable if
w1,1 .

1
2

(w2,1 1 w 2,2) , (2a)
a . (g 1 d)/2 (4)

and is unstable if the latter inequality is reversed. Mono- and are (simultaneously) unstable if the latter inequality
morphic equilibrium (0, 0, 1) is locally stable if is reversed.

Let us consider polymorphic equilibria of Equation 3.
w3,3 .

1
2

(w2,3 1 w 2,2) , (2b) Results 2 (existence of a symmetric polymorphic equi-
librium): There always exists a symmetric polymorphic
equilibrium with x sym 5 z sym . The genotype frequenciesand is unstable if the latter inequality is reversed.
at this equilibrium are x sym 5 u/(2u 1 2), ysym 5 1/(u 1Thus, a monomorphic equilibrium is stable if fitness

of the homozygote having a homozygous mother is larger 1), z sym 5 u/(2u 1 2), where
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Result 5: If b 5 d 5 0, the necessary and sufficient
u 5

a 2 d

2g
1 !1a 2 d

2g 2
2

1
b

g
. (5) condition for both existence and simultaneously stabil-

ity of a pair of asymmetric polymorphic equilibria is
A symmetric polymorphic equilibrium exists always but g . 2a.
is not always stable. This somewhat conterintuitive result means that ge-

Results 3 (stability of the symmetric polymorphic equi- netic variability can be maintained in the population
librium): The symmetric polymorphic equilibrium is lo- even if none of the offspring of heterozygous mothers
cally stable if survive. This is a general feature of models where there

is competition between sibs within a family and a feature(a 2 g)u , (d 2 a). (6)
of the maternal-effect selfish gene model of Wade and
Beeman (1994).A symmetric polymorphic equilibrium is never stable

if a . g,d and is always stable if a , g,d. Note that
the former (latter) inequality guarantees the stability Multiplicative model for maternal selection
(instability) of the monomorphic equilibria. If d . a .

Let an individual’s fitness, w, be a product of twog, then a symmetric equilibrium is stable for sufficiently
parameters, one of which, v, depends on an individual’ssmall b and is unstable for sufficiently large b. If d ,
own genotype, whereas another one, m, depends on itsa , g, then it is stable for sufficiently large b and is
mother’s genotypeunstable for sufficiently small b. It is possible that both

monomorphic equilibria and a symmetric equilibrium wij 5 vimj , i,j 5 1, 2, 3 . (8)
are stable simultaneously. In this case, initial conditions

This is a plausible assumption if different componentsdetermine whether polymorphism is or is not main-
of fitness are important at different stages of the lifetained in the system under consideration. On the other
cycle. In this case, the dynamic system (1) reduces tohand, it is possible that none of the equilibria we have

considered so far are stable.
wx 9 5 v1 3F11x 2 1 F12xy 1

1
4

F22y 24, (9a)Results 4 (existence of a pair of unsymmetric polymor-
phic equilibria): A pair of unsymmetric polymorphic
equilibria with genotype frequencies (x*, y*, z *) and

wy 9 5 v 2 3F12xy 1 F23yz 1 2F13x z 1
1
2

F22y24 , (9b)(z*, y*, x*) exists if

d 2 a 1 b/a(g 2 a)
a 2 (g 1 d)/2

. 2√b/a . (7) wz 9 5 v 3 3F33z 2 1 F23yz 1
1
4

F22y24, (9c)

Here where

Fij 5 (mi 1 mj)/2 (10)
y* 5

2a 2 g 2 d

(a 2 g)(1 2 b/a)
,

for all i ,j . Equations (9) are equivalent to those describ-
ing a general one-locus two-allele model with both viabil-and x* and z* are positive real solutions X to quadratic
ity selection (characterized by vi) and fertility differ-

X 2 2 (1 2 y*)X 1 (b/4a)y*2 5 0 . ences (characterized by Fij) introduced by Bodmer

(1965). Equations 9 and 10 with vi 5 1 (no viabilityIf a . g,d or a , g,d, the unsymmetric polymorphic
differences) define a model with additive fertilities, asequilibria do not exist. If a is closer to d than to g (that
studied by Penrose (1949). The general system (9, 10)is, D1 ; |a 2 d| , D2 ; |a 2 g|), then the unsymmetric
represents a partial case of a multiplicative fertility selec-polymorphic equilibria exist for sufficiently small b/a
tion model studied by Bodmer (1965). For some param-(for b/a , D1/D2). If a is closer to d than to g (i.e., D1 .
eter values this system admits two simultaneously stableD2), then the unsymmetric polymorphic equilibria exist
polymorphic equilibria.for sufficiently large b/a (for b/a . D1/D2).

Can these equilibria be stable? Conditions for stability
of these equilibria can be found in a straightforward Symmetric model for parental selection
manner but are rather cumbersome. These conditions

In this section, I assume that both parents contribute
simplify if b 5 d 5 0, that is, if offspring of heterozygous

to an offspring’s fitness. Let wi,jk be the fitness of an
mothers are inviable. In this case, the genotype frequen-

individual with genotype i raised by a mother with geno-cies at unsymmetric equilibria are
type j and a father with genotype k (i , j , k 5 1, 2, 3).
Using Table 1, the adult frequencies x9, y 9 and z 9 in the10,

a

g 2 a
, 1 2

a

g 2 a2 and 11 2
a

g 2 a
,

a

g 2 a
, 02 ;

next generation are defined by

at the former, genotype AA has zero frequency, whereas wx 9 5 w1,11x 2 1
1
2

(w1,12 1 w1,21)xy 1
1
4

w1,22y 2 , (11a)
at the latter, genotype aa has zero frequency.
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wy 9 5
1
2
(w 2,12 1 w 2,21)xy 1

1
2
(w 2,23 1 w2,32)yz

1 (w 2,13 1 w 2,31)xz 1
1
2
w 2,22y2 , (11b)

wz 9 5 w 3,33z 2 1
1
2
(w 3,32 1 w 3,23)yz 1

1
4

w3,22y 2 . (11c)

Let us assume that wi,jk 5 wjk, that is, the fitness of an
individual depends only on the genotypes of its parents
and does not depend on its own genotype. This is a
two-parent generalization of the model introduced by
Wright (1969, pp. 57–59). Let us further assume that
the fitness matrix wjk is symmetric and has the following
form:

Paternal genotype

Maternal genotype AA Aa aa

AA a b g
Aa b d b

Figure 1.—The bifurcation diagram for the heterozygote fre-aa g b a
quency y in the symmetric model of parental selection (12) with
a 5 b 5 0. The symmetric polymorphic is stable for d/g , 4where a, d, g and d are nonnegative parameters. Note
(solid line) and is unstable for d/g . 4 (circles). At d/g 5 4,that the meaning of these parameters in the model
a stable two-cycle bifurcates from the equilibrium point (dashedconsidered here is completely independent of that in
line). The homozygote frequencies x 5 z 5 (1 2 z)/2.

the previous sections. With fitnesses as above, the dy-
namic equations (11) can be rewritten as

CONCLUSIONS
wx 9 5 ax2 1 bx y 1

1
4

dy 2, (12a)
Here I have studied a series of simple one-locus two-

allele models for maternal (parental) selection. Srb et al.
(1965, Chapter 11) give several examples for maternalwy9 5 bxy 1 by z 1 2gxz 1

1
2

dy2 , (12b)
effects that can be attributed to a single diallelic locus;
see Wade (1996) for more discussion of the relevance

wz 9 5 az2 1 byz 1
1
4

dy 2. (12c) of maternal effects controlled by a small number of loci
with large effects. My results indicate similarity between
dynamic behaviors under maternal selection and fertil-These equations are exactly the same as those analyzed

by Hadeler and Liberman (1975) in the context of ity selection. The latter is well-known to be much more
complicated than the dynamics resulting from viabilityfertility selection models. Numerous results by these

authors are applicable here. In particular, the dynamic selection (e.g., Owen 1953; Bodmer 1965; Hadeler and
Liberman 1975). I have shown that maternal selectionsystem (12) can have two simultaneously stable polymor-

phic equilibria or a stable limit cycle with period two! can result in a simultaneous stability of equilibria of
different types. Thus, in the presence of maternal (pa-To illustrate this, let us assume that only offspring

of heterozygous parents and of different homozygous rental) selection, the outcome of population evolution
can significantly depend on initial conditions. With ma-parents are viable, and offspring of all other pairs of

parents are inviable. In this case the following is true. ternal selection, genetic variability can be maintained
in a population even if none of the offspring of heterozy-Result 6: Let a 5 b 5 0, d, g . 0. Then if 4g . d,

the only stable equilibrium of (12) is a symmetric poly- gous mothers survive. I have demonstrated that interac-
tions of maternal and paternal selection can result inmorphic equilibrium (with x* 5 z *). If 4g , d, the

system does not have any stable equilibria. stable oscillations of genotype frequencies. A possibility
for cycling and even chaos in theoretical models incor-In the latter case, the system cycles with period two (see

Figure 1). In general, a dynamic system (12) cycles if the porating maternal effects has been already demonstrated
by Ginzburg and Taneyhill (1994). In Ginzburg andfitness d of individuals with both parents heterozygous is

sufficiently large relative to the fitness g of individuals Taneyhill’s model, cycling resulted from ecological
factors. In contrast, in the model considered here cy-with different homozygous parents, which in turn is

sufficiently larger than fitnesses a and b of other individ- cling is brought about by genetic factors and maternal
selection.uals.
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Evolution, edited by C. R. B. Boake. University of Chicago Press,The counterintuitive results about the maintenance
Chicago.

of variability and cycling require selection to be strong.
Dickerson, G. E., 1947 Composition of hog carcasses as influenced

by heritable differences in rate in economy of gain. Iowa Agr.The following two examples of very strong maternal
Exp. Sta. Res. Bull. 354: 492–524.selection are interesting in this respect. The first exam-

Falconer, D. S., 1965 Maternal effects and selection response, pp.
ple (Srb et al. 1965, pp. 319–320) concerns Drosophila 763–774 in Proceedings of the XI International Congress on Genet-

ics, Vol. 3, S. J. Geerts, editor. Pergamon Press, Oxford.where the sex-linked recessive gene fused causes partial
Falconer, D. S., 1989 Introduction to Quantitative Genetics. Johnsterility as well as fusion of two longitudinal wings’ veins.

Wiley & Sons, New York.
At least one wild-type allele of the fused locus must be

Fox, C. W., and T. A. Mousseau, 1996 Larval host plant affects
fitness consequences of egg size variation in the seed beetle Statorpresent in either the mother or in the progeny in order
Limbatus. Oecologia 107: 541–548.for embryogenesis to proceed normally. As a result,

Ginzburg, L. R., and D. E. Taneyhill, 1994 Population cycles of
offspring with identical genotypes may die or develop forest Lepidoptera: a maternal effect hypothesis. J. Anim. Ecol.

63: 79–92.to maturity, depending on the genotype of their mother.
Hadeler, K. P., and U. Liberman, 1975 Selection models with fertil-The second example is a class of dominant lethal genetic

ity differences. J. Theor. Biol. 2: 19–32.
factors called Medea that is widespread in natural popula-

Kirkpatrick, M., and R. Lande, 1989 The evolution of maternal
characters. Evolution 43: 485–503.tions of the flour beetle, Tribolium castaneum (Beeman

Lande, R., and T. Price, 1989 Genetic correlations and maternalet al. 1992). These factors cause maternal-effect lethality effect coefficients obtained from offspring-parent regression. Ge-
of all offpring not inheriting a copy of the factor [see netics 122: 915–922.

Lande, R., and M. Kirkpatrick, 1990 Selection response in traitsWade and Beeman (1994) for a theoretical study of the
with maternal inheritance. Genet. Res. 55: 189–197.evolutionary dynamics of these factors]. These examples

Nagylaki, T., 1992 Introduction to Theoretical Population Genetics.
suggest that conditions necessary for complex dynamics Springer-Verlag, Berlin.

Orr, H. A., 1991 Is single-gene speciation possible? Evolution 45:might be satisfied at least for some biological systems.
764–769.Results and findings reported here are complemen-

Owen, A. R. G., 1953 A genetic system admitting of two distinct
tary to those obtained within the quantitative genetic stable equilibria under natural selection. Heredity 7: 97–102.

Penrose, L. S., 1949 Themeaning of “fitness” inhuman populations.framework (e.g., Dickerson 1947; Villham 1963, 1972;
Ann. Eugenics 14: 301–304.

Falconer 1965; Cheverud 1984; Kirkpatrick and
Roosenburg, W. M., 1996 Maternal condition and nest site

Lande 1989; Lande and Price 1989; Lande and Kirk- choice—an alternative for the maintenance of environmental sex
determination. American Zoologist 36: 157–168.patrick 1990). The latter typically considers an additive

Rossiter, M., 1995 Impact of life-history evolution on populationquantitative trait that is controlled by both direct genetic
dynamics: predicting the presence of maternal effects, pp. 251–

and maternal factors and that is subject to phenotypic 275 in Population Dynamics, edited by N. Cappuccino and P. W.

Price. Academic Press, San Diego.selection. The main focus is usually on the dynamics of
Rossiter, M., 1996 Incidence and consequences of inherited envi-the mean value of the trait, whereas (constant) genetic

ronmental effects. Ann. Rev. Ecol. Syst. 27: 451–476.
variability is tacitly assumed to be maintained by some

Sinervo, B., and P. Doughty, 1996 Interactive effects of offspring
size and timing of reproduction on offspring reproduction—factors that are not considered explicitly. The major
experimental, maternal, and quantitative genetic aspects. Evolu-locus framework utilized here and in Wright (1969),
tion 50: 1314–1327.

Nagylaki (1992), and Wade and Beeman (1994) fo-
Srb, A. M., R. D. Owen and R. S. Edgar, 1965 General Genetics, Ed.

2. W. H. Freeman, San Francisco.cuses on maternal effects contributing directly to fitness.
Villham, R. L., 1963 The covariance between relatives for charactersThis framework allows for analyzing conditions for the

composed of components contributed by related individuals. Bio-
maintenance and dynamics of genetic variability and the metrics 19: 18–27.

Villham, R. L., 1972 The role of maternal effects in animal breed-existence of multiple stable equilibria. Generalization of
ing. III. Biometrial aspects of maternal effects in animals. J. Anim.this approach for the case of multiple alleles and loci
Sci. 35: 1288–1293.

would be very desirable.
Wade, M. J., 1996 The evolutionary genetics of maternal effects. (in

press)I am grateful to MaryCarol Rossiter and Michael Wade for
Wade, M. J., and R. W. Beeman, 1994 The population dynamics of

sharing manuscripts before publication and to reviewers for valuable maternal-effect selfish genes. Genetics 138: 1309–1314.
comments and suggestions. This work was partially supported by Na-

Wolf, J. B., E. D. Brodie III, J. M. Cheverud, A. J. Moore and
tional Institutes of Health grant GM-56693.

M. J. Wade, 1997 Evolutionary consequences of indirect genetic
effects. Trends Ecol. Evol. 13: 64–69.

Wright, S., 1969 Evolution and the Genetics of Populations, Vol. II. The
Theory of Gene Frequencies. The University of Chicago Press, Chicago.
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to the equilibrium value defined by Equation A4, one
u9 5

au 2 1 (a 1 b)u 1 b

guv 1 1/2(g 1 d)(u 1 v) 1 d
, (A1a) finds Equation 6, which completes the proof of Result 3.

Combining Equation A3 with Equation A2 at equilib-
rium, one finds that at asymmetric equilibriav9 5

av2 1 (a 1 b)v 1 b

guv 1 1/2(g 1 d)(u 1 v) 1 d
. (A1b)

uv 5 b/a , (A5a)
Subtracting Equation A1a from Equation A1b,

u 1 v 5
d 2 a 1 b/a(g 2 a)

a 2 (g 1 d)/2
; T. (A5b)

u9 2 v9 5
a 1 b 1 a(u 1 v)

guv 1 1/2(g 1 d)(u 1 v) 1 d
(u 2 v). (A2)

Eliminating v, one finds that equilibrium values of u satisfy
The last equality means that at equilibrium either u 5 v, to a quadratic u 2 2 Tu 1 b/a 5 0, which has both roots
or positive and real if T . 2√b/a . The latter is the condition

of existence of unsymmetric polymorphic equilibria stated
a 1 b 1 a(u 1 v)

guv 1 1/2(g 1 d)(u 1 v) 1 d
5 1. (A3) in Result 4. Equilibrium values of genotype frequencies

can be found by using the inverse transformation x 5 u/
(2 1 u 1 v), y 5 2/(2 1 u 1 v), z 5 v/(2 1 u 1 v).if v 5 u, Equation A1b takes the form

If b 5 d 5 0, the values of u and v at the unsymmetric
equilibria are (0,a/(g/2 2 a)) and (a/(g/2 2 a), 0).u9 5

au 1 b

gu 1 d
; F(u). (A4)

Thus, these equilibria are feasible if a , g/2. The eigen-
values of the stability matrix at these equilibria are 2a/g

It is easy to see that F(u) is a monotonic function of u
and 1 2 2a/g. For the unsymmetric equilibria to be stable

with no inflection points. Thus, the equation u 5 F(u) these eigenvalues should lie between 21 and 1, which is
has a single positive solution, which defines the value of obviously the case given that the equilibria exist. This
u at the symmetric polymorphic equilibrium and is given completes the proof of Result 5.
in Result 2. Using Equations 4 and 6 from Hadeler and Liberman

The symmetric equilibrium is stable with respect to sym- (1975), one finds that if a 5 b 5 0, the only equilibrium
metric perturbations (such that perturbed values of u and of Equation 12 satisfies to the cubic
v are equal), if at this equilibrium

εw 3 1 w 2 1 5 0, (A6)
21 ,

dF(u)
du

, 1. where ε 5 d/g. The eigenvalue that determines stability
of this equilibrium is equal to 22εw 3. One can easily show

The latter inequality follows from the fact that the graph that if ε , 4, then εw3 , 1/2 and hence the symmetric
of Y 5 F(u) crosses the line Y 5 u from left to right. The polymorphic equilibrium is stable. On the other hand, if
former inequality can be proven after calculating dF/du ε . 4, then εw3 . 1/2 and hence the symmetric polymor-
and plugging in the equilibrium value of u. Thus, the phic equilibrium is unstable. This completes the proof of
symmetric equilibrium is always stable to symmetric pertur- Result 6. Note that iterating Equation 4 from Hadeler and
bations. To analyze the stability of this equilibrium to asym- Liberman (1975) twice one can easily find the genotype
metric perturbations (such that perturbed values u ? v), frequencies corresponding to the two-cycle symmetric so-
one needs to analyze Equation A2. This equation tells lution of Equation 12. The fact that the right-hand side
us that the equilibrium is stable if the expression in the of Equation 4 from Hadeler and Liberman (1975) is a
left-hand side of Equation A3 is ,1. Rewriting this condi- monotonically decreasing function implies that this equa-

tion does not have any other periodic solutions.tion under the assumption that both u and v are equal


