
Type Inference Algorithm(s)
Adalynn Taylor



Questions

1. What is the most general type system in the Lambda Cube?
2. What type systems do Algorithm W apply to?
3. What's the problem with type inference for more general systems?



About Me

- Senior Undergraduate, Math Major. Advisor for Honors Thesis: Cartwright. 
- Mathematical Logic, Formalization, Formal Methods

- (hence my topic choice)





(^ specifically, this Lean ^)



Outline

- Overview
- History of Type Theory

- Russell
- Martin-Lof
- Coquand
- Lambda Cube

- Algorithms
- Algorithm W
- Unification
- Higher? (Answer: no)

- Applications
- Type Systems, Proof Assistants

- Implementations?
- Open Issues



Overview

A type, roughly speaking, is a collection of objects

Type theory is the study of how rule systems governing these types interact.

Dependent type systems have types that can depend on terms

(think of int[3])

MGU (Most General Unifier):

A polymorphic type 

Principia Mathematica

Functional Programming Languages

Proof assistants



History

● Principia Mathematica
○ Theory of Types - was created to resolve Russell’s paradox.
○ Later ramified, i.e. distinction between real and apparent variables collapsed.

● Martin-Lof type theory
○ Dependent Types

● Calculus of Constructions, Coquand and Huet
● Barendregt's lambda cube



X: Dependent Types (think int[3])
Y: Polymorphism (think f<T>)
Z: Type Operators (think vector<int>)

Least General: Simple Types

Most general: 
Calculus of 
Constructions



Algorithms: W (not imperative) and J (imperative)



Huh?



Algorithms W and J correspond to 
Hindley-Miller Type Systems. 

Not exactly on the lambda-cube

Somewhere between Simply Typed and 
System F (aka lambda2) 



Unification

Both algorithms W and J rely on unification and finding the most general type.

Unification, to simplify, is solving equations based on symbolic expressions.

First-order unification has an algorithm [Robinson; Martelli, Montanari]

 



But



Unification - Higher Order

Higher order unification, however, is not decidable. 



F



What does that mean? Why aren’t there more?

It means that type systems like F, and especially proof assistants, need to have 
some explicit type annotation somewhere, or otherwise there is no most general 
unifier! 





Why?



Applications

HM is used as the basis for a few functional programming language’s type 
systems, of course with extensions.

Proof assistants

- Formalization of Mathematics
- Formal Methods (Software Verification!)

Linguistics (go see formal semantics of natural languages for THAT connection)



Questions (Revisited)

1. What is the most general type system in the Lambda Cube?
2. What type systems do Algorithm W apply to?
3. What's the problem with type inference for more general systems?



References

https://plato.stanford.edu/entries/type-theory/

https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system

https://plato.stanford.edu/entries/type-theory/
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system

