Type Inference Algorithm(s)

Adalynn Taylor

Questions

- 1. What is the most general type *system* in the Lambda Cube?
- 2. What type systems do Algorithm W apply to?
- 3. What's the problem with type inference for more general systems?

About Me

- Senior Undergraduate, Math Major. Advisor for Honors Thesis: Cartwright.
- Mathematical Logic, Formalization, Formal Methods

(^ specifically, this Lean ^)

Outline

- Overview
- History of Type Theory
 - Russell
 - Martin-Lof
 - Coquand
 - Lambda Cube
- Algorithms
 - Algorithm W
 - Unification
 - Higher? (Answer: no)
- Applications
 - Type Systems, Proof Assistants
- Implementations?
- Open Issues

Overview

A type, roughly speaking, is a collection of objects

Type theory is the study of how rule systems governing these types interact.

Dependent type systems have types that can depend on terms

(think of int[3])

MGU (Most General Unifier):

A polymorphic type

Principia Mathematica

Functional Programming Languages

Proof assistants

History

- Principia Mathematica
 - Theory of Types was created to resolve Russell's paradox.
 - Later *ramified*, i.e. distinction between real and apparent variables collapsed.
- Martin-Lof type theory
 - Dependent Types
- Calculus of Constructions, Coquand and Huet
- Barendregt's lambda cube

Algorithms: W (not imperative) and J (imperative)

Algorithm W $x: \sigma \in \Gamma \quad \tau = inst(\sigma)$ [Var] $\Gamma \vdash_W x : \tau, \emptyset$ $\Gamma \vdash_W e_0 : \tau_0, S_0 \quad S_0 \Gamma \vdash_W e_1 : \tau_1, S_1$ au' = newvar $S_2 = {\sf mgu}(S_1 au_0, \ au_1 o au')$ App $\Gamma \vdash_W e_0 e_1 : S_2 \tau', S_2 S_1 S_0$ $au = newvar \quad \Gamma, \ x: au dash_W \ e: au', S$ Abs $\Gamma \vdash_W \lambda x \cdot e : S \tau \to \tau' \cdot S$ $\frac{\Gamma \vdash_W e_0 : \tau, S_0 \quad S_0 \Gamma, \, x : \overline{S_0 \Gamma}(\tau) \vdash_W e_1 : \tau', S_1}{\Gamma \vdash_W \texttt{let} \, x = e_0 \, \texttt{in} \, e_1 : \tau', S_1 S_0}$ [Let]

Algorithm J $rac{x:\sigma\in\Gamma au=inst(\sigma)}{\Gamma\vdash_J x: au}$	[v
$\frac{\Gamma \vdash_J e_0 : \tau_0 \Gamma \vdash_J e_1 : \tau_1 \tau' = \textit{newvar} \textit{unify}(\tau_0, \ \tau_1 \rightarrow \tau')}{\Gamma \vdash_J e_0 \ e_1 : \tau'}$	[A]
$rac{ au = newvar \Gamma, \; x: au dash_J \; e: au'}{\Gamma dash_J \; \lambda \; x \; . \; e: au o au'}$	[A
$rac{\Gammadash_J \ e_0: au \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	[L

Expressions					
e = 	x $e_1 e_2$ $\lambda x \cdot e$ let $x = e_1$	in e_2	variable application abstraction		
Types					
mono poly	$egin{array}{rcl} au &=& lpha \ &\mid & C au \ \sigma &=& au \end{array}$	$\dots au$	variable application		
1 0	$ \forall \alpha$. σ	quantifier		
Context and Typing					
Context $\Gamma = \epsilon$ (empty) $ \Gamma, x : \sigma$					
Typing = $\Gamma \vdash e : \sigma$					
Free Type Variables					
free(α) = { α }					
free $(C \tau_1 \dots \tau_n) = \bigcup_{i=1}^n \text{free}(\tau_i)$					
free(Γ)	$= \bigcup_{x:\sigma\in a}$	$_{\Gamma}^{\rm free(\sigma)}$		
free(∀ free(Γ	$\left(lpha . \sigma \right)$ $\left(ert e : \sigma \right)$	= free = free	$(\sigma) - \{lpha \} \ (\sigma) - ext{free}(\Gamma)$		

Algorithms **W** and **J** correspond to Hindley-Miller Type Systems.

Not *exactly* on the lambda-cube

Somewhere between Simply Typed and System F (aka lambda2)

Unification

Both algorithms W and J rely on *unification* and *finding the most general type*.

Unification, to simplify, is solving equations based on symbolic expressions.

First-order unification has an algorithm [Robinson; Martelli, Montanari]

Unification - Higher Order

Higher order unification, however, is not decidable.

What does that *mean?* Why aren't there more?

It means that type systems like F, and *especially* proof assistants, need to have *some* explicit type annotation *somewhere*, or otherwise there is no most general unifier!

Applications

HM is used as the basis for a few functional programming language's type systems, of course with extensions.

Proof assistants

- Formalization of Mathematics
- Formal Methods (Software Verification!)

Linguistics (go see formal semantics of natural languages for THAT connection)

Questions (Revisited)

- 1. What is the most general type *system* in the Lambda Cube?
- 2. What type systems do Algorithm W apply to?
- 3. What's the problem with type inference for more general systems?

https://plato.stanford.edu/entries/type-theory/

https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system