
Collision Detection
Algorithms

Brandan Roachell and Rob Bray
April 27, 2023

Test Questions

1. What is the major flaw of discrete collision detection?

2. What kind of k-DOP is a 3D AABB? (What is k?)

3. What is one way to optimize a BVH?

Brandan Roachell

● First (and only, hopefully) year master’s student in Computer Science (5-Year BS/MS)

● Graduated from UTK in Dec. 2022 w/ BS in CS and a math minor

● Used to do undergrad research under Dr. Taufer, now a GTA for her data mining class

● Planning to do software engineering somewhere, but not really sure

● Interests:
○ piano

○ robotics

○ hiking?

13 y/o me
(May 2015)

Chimney
Tops Trail

(Dec. 2021)

2021 “World” Champs!
and Excellence Award

2022 Think Award

action shot (2022)

● I’m from Memphis, TN

● Places I’ve been (intended destination)
○ also a few cities in China back in 2010 (toured Beijing and visited family in Nanning) and a few

cities in Germany (mainly Berlin) in summer 2019 before my first semester here

● Can’t cook but love eating / trying all kinds of foods
○ some of my absolute favorites: nigiri/sashimi, Korean BBQ, ramen, bubble tea

Houston, TX
(2021)

Atlanta, GA
(2022) Fin-Two

(Downtown!)

Rob Bray

● Grew up in Savannah, GA. Lived in

Hummelstown, Pennsylvania for 3 years.

Moved to Tennessee for undergrad in CS

at UTK

● First year masters in CS, advised by Dr.

Gregor, GRA for Dr. Xiaopeng Zhao, GTA

for Dr. Emrich

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.savannah.com%2F&psig=AOvVaw0MehE0a62avBN1bLId38cq&ust=1682521410469000&source=images&cd=vfe&ved=0CBAQjRx
qFwoTCKDngu2mxf4CFQAAAAAdAAAAABAY

https://www.tripadvisor.com/Attraction_Review-g60814-d259614-Reviews-Forsyth_Park-Savannah_Georgia.html

Forsyth Park

● Thesis work: FRED, the

friendly robot to ease

dementia. Affordable

social robot based on

Raspberry Pi for older

adults with cognitive

decline

● I love movies

● Favorite movie ever: Monty

Python and the Holy Grail

● Favorite movie right now:

Bullet Train

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.imdb.com%2Ftitle%2Ftt0071853%2F&psig=AOvVaw3g0p_egR49V5
ZSP0ywH5wB&ust=1682522411132000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCKjLkMiqxf4CFQAAAAAdAAAAABAD

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.sonypictures.com%2Fmovies%2Fbullettrain&psig=AOvVaw
2Tepl1mehgGfUyUinrdyWz&ust=1682522530896000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCOCI-oKrxf4CFQA

AAAAdAAAAABAI

https://www.google.com/url?sa=i&url=https%3A%2F%2Fbloody-disgusting.com%2Fmovie%2F3718201%2Fbullet-train-trailer-2-brad-pitt-fights-to-survive-in
-deadpool-2-directors-violent-action-thriller%2F&psig=AOvVaw2Tepl1mehgGfUyUinrdyWz&ust=1682522530896000&source=images&cd=vfe&ved=0CBAQ

jRxqFwoTCOCI-oKrxf4CFQAAAAAdAAAAABAo

Outline

● Overview of Simulating Collisions
○ Intro to Physics Simulation
○ Types of Collision Detection

● Data Structures & Algorithms
● History
● Applications
● Implementations
● Live Demo
● Results
● Open Issues
● References and Closing

Intro to Physics
Simulation

● Goal: simulate a set of physical laws as accurately as possible
○ it should at least “feel right” and be stable enough

● Base level: kinematics, the motion of objects alone over time
○ gravity, friction

● Next level: collision detection
○ more complex shapes and models?

● Next level: collision resolution
○ elastic or inelastic?
○ what about angular velocity / momentum?

● More advanced simulations for fluid dynamics, soft-body
dynamics, cloth, modeling light transport (ray tracing), etc.

velocities after an
elastic collision

Types of Collision Detection

● Discrete
○ uses the time step between current time and the last frame for

kinematics (referred to as dt, “delta time,” or a “tick”)
○ suffers from the so-called “tunneling effect”

● Continuous
○ requires some form of interpolation between t

0
 and t

1
 = t

0
 + dt

■ supersampling
■ bisection
■ ray casting

○ more substeps (costly)
■ significant impact

on performance

[2]

orientation usually not considered in CCD!

[2]

Data Structures

● Bounding box/volume vs. hitbox
○ axis-aligned bounding box (AABB)
○ oriented bounding box (OBB)
○ k discrete oriented polytope (k-DOP)

● Bounding volume hierarchy (BVH)
○ AABB tree or R-tree (“rectangle” tree)

● k-d trees
○ generalization of quadtrees / octrees
○ k represents the number of dimensions subdivided by

arbitrarily positioned splits, performed in one dimension at a
time (does not have to match the dimensionality of the space)

https://developer.valvesoftware.com/wiki/Bounding_box

https://developer.valvesoftware.com/wiki/Hitbox

[3] pg. 320

a 2D k-d tree

[3] pg. 320

https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/Collision/HowTo/AddDOP/

https://subscription.packtpub.com/book/game+development/9781783288199/5/ch05lvl1sec29/
circular-collision-detection

https://www.researchgate.net/figure/Bounding-volumes-sphere-axis-
aligned-bounding-box-AABB-oriented-bounding-box_fig9_272093426

https://en.wikipedia.org/wiki/Bounding_volume_hierarchy

Algorithms

● Pairwise checking
○ naive: try all combinations
○ broad phase algorithms to reduce the

number of pairs
■ sweep and prune / sort and sweep
■ hierarchical methods

● spatial partitioning
○ uniform grid
○ k-d trees

● object partitioning
○ BVH

https://www.youtube.com/watch?v=e1wOWTT7fYk

[4]

Algorithms

● Pairwise checking
○ narrow phase

■ convex decomposition
● Hierarchical Approximate Convex

Decomposition (HACD)
■ check for overlap

● Separating Axis Theorem (SAT)
● Gilbert–Johnson–Keerthi distance

algorithm (GJK)

[4]

https://en.wikipedia.
org/wiki/Hyperplane
_separation_theorem

https://github.com/kmammou/v-hacd

History

● Arthur Appel (1968): first computer-generated
image shaded by ray tracing

● Jeffrey Goldsmith & John Salmon (1987):
○ automatic generation of bounding volume

hierarchies
○ surface area heuristic (SAH) as a predictor for

tree generation
● J. David MacDonald & Kellogg Booth (1990):

applying SAH to binary trees for space subdivision

Appel 1968 [9]

Goldsmith & Salmon
1987 [10]

MacDonald & Booth
1990 [11]

History

● Optimizations
○ Gino van den Bergen (1998): faster overlap

testing with probabilistic SAT [12]
■ only 15% of separating axes are in the

direction of two edges, so test a smaller
subset for 6% failure rate

■ this performance is competitive with
OBBs, where AABBs have been
previously discounted

○ Yi-Si Xing, Xiaoping Liu, Shao-Ping Xu
(2020): claimed O(n) algorithm similar to
sweep and prune with their novel axial cut axial cut & locality overlap testing

(Xing et al. 2020) [13]

https://independent.academia.edu/GinovandenBergen

Applications

● Optimizing simulations
○ acceleration of ray tracing
○ game engines
○ aerospace: 4D AABB tree for

space debris collision
○ swarm robotics

● Computational geometry /
computer graphics
○ specifically CAD

https://doc.cgal.org/latest/AABB_tree/index.html

https://www.scratchapixel.com/lessons/3d-basic-rende
ring/introduction-to-ray-tracing/implementing-the-ray

tracing-algorithm.html

Implementations

● Implemented a simple 2D discrete collision simulation
○ perfectly elastic circles
○ continuous wall collisions
○ “nudging” and density issues

● Implemented a 2D AABB (supports unions)
● Implemented a binary AABB tree

○ inserting a new leaf – O(log n)
■ recursively find the best sibling based on some cost function
■ create a new internal node, where the internal node’s children

are the best sibling and the new node
■ trickle up the change by refitting the AABBs based on the new

children
○ deleting a leaf – O(log n)

■ sibling replaces parent (internal node)
■ trickle up the change by refitting the AABBs

https://flatredball.com/documentation
/tutorials/math/circle-collision/

Implementations

● Various strategies for optimization
○ efficient insertion / good cost function

■ need a balance between quick insertion but “good enough” AABBs
■ either the insertion itself or the cost function can be recursive,

employing some heuristic for efficiency
● minimize surface area and overlap

○ try to keep as much of the tree when handling movement
■ rebuilding the tree each frame is costly
■ reinsertion is a good strategy because it is spread out

● occurs when a node travels outside its parent’s bounding box
■ padding / “speculative expansion” based on velocity

○ balancing
■ tree rotations
■ but reinsertion can can randomize the order naturally

issue with
improper padding

Implementations

● Broad phase checking each frame

○ brute force – O(n2)

○ combinations – O(n choose 2) = O(n(n-1)/2) (= O(n2))

○ AABB pruning – O(n log n)

■ for each of the n objects, each one takes O(log n) to

determine leaf overlaps by eliminating up to half the

objects per parent AABB check

■ we do not filter out duplicate checks

Implementations

● Demo!

● Our code: https://github.com/rjbray915/CS581-Final

https://github.com/rjbray915/CS581-Final

Results

● Testing parameters:

○ seed: 581

○ number of circles: 100

○ min radius: 10

○ max radius: 10

○ spacing: 10

○ numbers are recorded during the

second 30 seconds of the

simulation

Naive AABB Tree

Avg FPS 153.8 232.8

Avg Checks 4950.0 1012.3

● FPS speedup: 51.4%
● Checks performed: 20.5%

Results

● Testing parameters:

○ seed: 581

○ number of circles: 100

○ min radius: 1

○ max radius: 10

○ spacing: 10

○ numbers are recorded during the

second 30 seconds of the

simulation

Naive AABB Tree

Avg FPS 150.1 279.2

Avg Checks 4950.0 960.1

● FPS speedup: 86.0%
● Checks performed: 19.4%

Results

● Testing parameters:

○ seed: 581

○ number of circles: 100

○ min radius: 2

○ max radius: 2

○ spacing: 10

○ numbers are recorded during the

second 30 seconds of the

simulation

Naive AABB Tree

Avg FPS 152.6 298.3

Avg Checks 4950.0 852.9

● FPS speedup: 95.5%
● Checks performed: 17.2%

Results

● Testing parameters:

○ seed: 581

○ number of circles: 100

○ min radius: 40

○ max radius: 40

○ spacing: 10

○ numbers are recorded during the

second 30 seconds of the

simulation

Naive AABB Tree

Avg FPS 146.4 191.1

Avg Checks 4950.0 1632.8

● FPS speedup: 30.5%
● Checks performed: 33.0%

Open Issues

● Online video games
○ hit registration, lag compensation
○ server tick rate

■ Counter-Strike 2 sub-tick
updates

● Continuous collision detection
○ always room for improvement in

efficiency, accuracy, and precision

https://www.youtube.com/watch?v=6EwaW2iz4iA

References

1. https://digitalrune.github.io/DigitalRune-Documentation/html/138fc8fe-c536-40e0-af6b-0fb7e8e
b9623.htm

2. https://www.nphysics.org/continuous_collision_detection/
3. https://www.taylorfrancis.com/books/mono/10.1201/b14581/real-time-collision-detection-christe

r-ericson
4. https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
5. https://www.toptal.com/game/video-game-physics-part-ii-collision-detection-for-solid-objects
6. https://www.youtube.com/watch?v=9IULfQH7E90
7. https://box2d.org/files/ErinCatto_DynamicBVH_GDC2019.pdf
8. https://github.com/kip-hart/AABBTree/
9. https://dl.acm.org/doi/10.1145/1468075.1468082

10. https://ieeexplore.ieee.org/document/4057175
11. https://link.springer.com/article/10.1007/BF01911006
12. https://www.cs.cmu.edu/~djames/pbmis/etc/jgt98deform_AABB.pdf
13. https://ieeexplore.ieee.org/abstract/document/5524093?casa_token=3_gGtO94mGwAAAAA:G8P

3XI6RN6fxm5PbXQ3FlehlIvJiuaj3rZb20on79exIzjwXea-M2Gde7fZPmGiPHD2oFECXNw

https://digitalrune.github.io/DigitalRune-Documentation/html/138fc8fe-c536-40e0-af6b-0fb7e8eb9623.htm
https://digitalrune.github.io/DigitalRune-Documentation/html/138fc8fe-c536-40e0-af6b-0fb7e8eb9623.htm
https://www.nphysics.org/continuous_collision_detection/
https://www.taylorfrancis.com/books/mono/10.1201/b14581/real-time-collision-detection-christer-ericson
https://www.taylorfrancis.com/books/mono/10.1201/b14581/real-time-collision-detection-christer-ericson
https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
https://www.toptal.com/game/video-game-physics-part-ii-collision-detection-for-solid-objects
https://www.youtube.com/watch?v=9IULfQH7E90
https://box2d.org/files/ErinCatto_DynamicBVH_GDC2019.pdf
https://github.com/kip-hart/AABBTree/
https://dl.acm.org/doi/10.1145/1468075.1468082
https://ieeexplore.ieee.org/document/4057175
https://link.springer.com/article/10.1007/BF01911006
https://www.cs.cmu.edu/~djames/pbmis/etc/jgt98deform_AABB.pdf
https://ieeexplore.ieee.org/abstract/document/5524093?casa_token=3_gGtO94mGwAAAAA:G8P3XI6RN6fxm5PbXQ3FlehlIvJiuaj3rZb20on79exIzjwXea-M2Gde7fZPmGiPHD2oFECXNw
https://ieeexplore.ieee.org/abstract/document/5524093?casa_token=3_gGtO94mGwAAAAA:G8P3XI6RN6fxm5PbXQ3FlehlIvJiuaj3rZb20on79exIzjwXea-M2Gde7fZPmGiPHD2oFECXNw

Discussion

● Questions?

Test Questions Revisited

1. What is the major flaw of discrete collision detection?

2. What kind of k-DOP is a 3D AABB? (What is k?)

3. What is one way to optimize a BVH?

