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Test Questions

1. What is the major flaw of discrete collision detection?

2. What kind of k-DOP is a 3D AABB? (What is k?)

3. What is one way to optimize a BVH?
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Intro to Physics 
Simulation

● Goal: simulate a set of physical laws as accurately as possible
○ it should at least “feel right” and be stable enough

● Base level: kinematics, the motion of objects alone over time
○ gravity, friction

● Next level: collision detection
○ more complex shapes and models?

● Next level: collision resolution
○ elastic or inelastic?
○ what about angular velocity / momentum?

● More advanced simulations for fluid dynamics, soft-body 
dynamics, cloth, modeling light transport (ray tracing), etc.

velocities after an 
elastic collision



Types of Collision Detection

● Discrete
○ uses the time step between current time and the last frame for 

kinematics (referred to as dt, “delta time,” or a “tick”)
○ suffers from the so-called “tunneling effect”

● Continuous
○ requires some form of interpolation between t

0
 and t

1
 = t

0
 + dt

■ supersampling
■ bisection
■ ray casting

○ more substeps (costly)
■ significant impact

on performance

[2]



orientation usually not considered in CCD!

[2]



Data Structures

● Bounding box/volume vs. hitbox
○ axis-aligned bounding box (AABB)
○ oriented bounding box (OBB)
○ k discrete oriented polytope (k-DOP)

● Bounding volume hierarchy (BVH)
○ AABB tree or R-tree (“rectangle” tree)

● k-d trees
○ generalization of quadtrees / octrees
○ k represents the number of dimensions subdivided by 

arbitrarily positioned splits, performed in one dimension at a 
time (does not have to match the dimensionality of the space)

https://developer.valvesoftware.com/wiki/Bounding_box

https://developer.valvesoftware.com/wiki/Hitbox

[3] pg. 320

a 2D k-d tree



[3] pg. 320

https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/Collision/HowTo/AddDOP/

https://subscription.packtpub.com/book/game+development/9781783288199/5/ch05lvl1sec29/
circular-collision-detection

https://www.researchgate.net/figure/Bounding-volumes-sphere-axis-
aligned-bounding-box-AABB-oriented-bounding-box_fig9_272093426

https://en.wikipedia.org/wiki/Bounding_volume_hierarchy



Algorithms

● Pairwise checking
○ naive: try all combinations
○ broad phase algorithms to reduce the 

number of pairs
■ sweep and prune / sort and sweep
■ hierarchical methods

● spatial partitioning
○ uniform grid
○ k-d trees

● object partitioning
○ BVH

https://www.youtube.com/watch?v=e1wOWTT7fYk

[4]



Algorithms

● Pairwise checking
○ narrow phase

■ convex decomposition
● Hierarchical Approximate Convex 

Decomposition (HACD)
■ check for overlap

● Separating Axis Theorem (SAT)
● Gilbert–Johnson–Keerthi distance 

algorithm (GJK)

[4]

https://en.wikipedia.
org/wiki/Hyperplane
_separation_theorem

https://github.com/kmammou/v-hacd



History

● Arthur Appel (1968): first computer-generated 
image shaded by ray tracing

● Jeffrey Goldsmith & John Salmon (1987):
○ automatic generation of bounding volume 

hierarchies
○ surface area heuristic (SAH) as a predictor for 

tree generation
● J. David MacDonald & Kellogg Booth (1990): 

applying SAH to binary trees for space subdivision

Appel 1968 [9]

Goldsmith & Salmon 
1987 [10]

MacDonald & Booth 
1990 [11]



History

● Optimizations
○ Gino van den Bergen (1998): faster overlap 

testing with probabilistic SAT [12]
■ only 15% of separating axes are in the 

direction of two edges, so test a smaller 
subset for 6% failure rate

■ this performance is competitive with 
OBBs, where AABBs have been 
previously discounted

○ Yi-Si Xing, Xiaoping Liu, Shao-Ping Xu 
(2020): claimed O(n) algorithm similar to 
sweep and prune with their novel axial cut axial cut & locality overlap testing 

(Xing et al. 2020) [13]

https://independent.academia.edu/GinovandenBergen



Applications

● Optimizing simulations
○ acceleration of ray tracing
○ game engines
○ aerospace: 4D AABB tree for 

space debris collision
○ swarm robotics

● Computational geometry / 
computer graphics
○ specifically CAD

https://doc.cgal.org/latest/AABB_tree/index.html

https://www.scratchapixel.com/lessons/3d-basic-rende
ring/introduction-to-ray-tracing/implementing-the-ray

tracing-algorithm.html



Implementations

● Implemented a simple 2D discrete collision simulation
○ perfectly elastic circles
○ continuous wall collisions
○ “nudging” and density issues

● Implemented a 2D AABB (supports unions)
● Implemented a binary AABB tree

○ inserting a new leaf – O(log n)
■ recursively find the best sibling based on some cost function
■ create a new internal node, where the internal node’s children 

are the best sibling and the new node
■ trickle up the change by refitting the AABBs based on the new 

children
○ deleting a leaf – O(log n)

■ sibling replaces parent (internal node)
■ trickle up the change by refitting the AABBs

https://flatredball.com/documentation
/tutorials/math/circle-collision/



Implementations

● Various strategies for optimization
○ efficient insertion / good cost function

■ need a balance between quick insertion but “good enough” AABBs
■ either the insertion itself or the cost function can be recursive, 

employing some heuristic for efficiency
● minimize surface area and overlap

○ try to keep as much of the tree when handling movement
■ rebuilding the tree each frame is costly
■ reinsertion is a good strategy because it is spread out

● occurs when a node travels outside its parent’s bounding box
■ padding / “speculative expansion” based on velocity

○ balancing
■ tree rotations
■ but reinsertion can can randomize the order naturally

issue with 
improper padding



Implementations

● Broad phase checking each frame

○ brute force – O(n2)

○ combinations – O(n choose 2) = O(n(n-1)/2) ( = O(n2))

○ AABB pruning – O(n log n)

■ for each of the n objects, each one takes O(log n) to 

determine leaf overlaps by eliminating up to half the 

objects per parent AABB check

■ we do not filter out duplicate checks



Implementations

● Demo!

● Our code: https://github.com/rjbray915/CS581-Final

https://github.com/rjbray915/CS581-Final


Results

● Testing parameters:

○ seed: 581

○ number of circles: 100

○ min radius: 10

○ max radius: 10

○ spacing: 10

○ numbers are recorded during the 

second 30 seconds of the 

simulation

Naive AABB Tree

Avg FPS 153.8 232.8

Avg Checks 4950.0 1012.3

● FPS speedup: 51.4%
● Checks performed: 20.5%



Results

● Testing parameters:

○ seed: 581

○ number of circles: 100

○ min radius: 1

○ max radius: 10

○ spacing: 10

○ numbers are recorded during the 

second 30 seconds of the 

simulation

Naive AABB Tree

Avg FPS 150.1 279.2

Avg Checks 4950.0 960.1

● FPS speedup: 86.0%
● Checks performed: 19.4%



Results

● Testing parameters:

○ seed: 581

○ number of circles: 100

○ min radius: 2

○ max radius: 2

○ spacing: 10

○ numbers are recorded during the 

second 30 seconds of the 

simulation

Naive AABB Tree

Avg FPS 152.6 298.3

Avg Checks 4950.0 852.9

● FPS speedup: 95.5%
● Checks performed: 17.2%



Results

● Testing parameters:

○ seed: 581

○ number of circles: 100

○ min radius: 40

○ max radius: 40

○ spacing: 10

○ numbers are recorded during the 

second 30 seconds of the 

simulation

Naive AABB Tree

Avg FPS 146.4 191.1

Avg Checks 4950.0 1632.8

● FPS speedup: 30.5%
● Checks performed: 33.0%



Open Issues

● Online video games
○ hit registration, lag compensation
○ server tick rate

■ Counter-Strike 2 sub-tick 
updates

● Continuous collision detection
○ always room for improvement in 

efficiency, accuracy, and precision

https://www.youtube.com/watch?v=6EwaW2iz4iA
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Discussion

● Questions?



Test Questions Revisited

1. What is the major flaw of discrete collision detection?

2. What kind of k-DOP is a 3D AABB? (What is k?)

3. What is one way to optimize a BVH?


