FFT

Qian Liu, Fujiao Ji
COSC 581 Algorithm

Fujiao Ji

Advisor: Dr. Doowon Kim

Research Interest: Machine Learning and Cybersecurity

Qian Liu Advisor: Dr. Yilu Liu

Research Interest:

Frequency Monitoring Network data analysis

Hobby: Japanese Anime, Basketball

Questions

1. Does the Fourier series prove that a non-periodic function is a sum of trigonometric functions?
2. What are the steps of divide \& conquer approach?
3. Based on Euler's formula, a general point on a complex plane can be represented in what format?

Content

1.History
2.Fourier series
3.Fourier transform
4.Discrete Fourier transform (DFT)
5.Fast Fourier transform (FFT)
6.Some Applications
7.Implementation of FFT

1. History

- 1807, Jean-Baptiste Joseph Fourier proposed Fourier Series. A Fourier series is an expansion of a periodic function into a sum of trigonometric functions [1]
- The Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function [2]
- The discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency
- 1965, J. W. Cooley and John Tukey. A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT)[4]

[^0]
2. Fourier series

$$
f(t)=\frac{a_{0}}{2}+\sum a_{n} \sin \left(n \omega t+\varphi_{n}\right)
$$

$$
=\frac{a_{0}}{2}+\sum a_{n} \sin (n \omega t)+\sum b_{n} \cos (n \omega t)
$$

3. Fourier Transform

$$
\begin{gathered}
\cos \theta+i \sin \theta=e^{i \theta} \\
\theta=\omega t \rightarrow e^{i \omega t}, e^{-i \omega t}
\end{gathered}
$$

$$
\begin{gathered}
\cos \theta+i \sin \theta=e^{i \theta} \\
\theta=\omega t \rightarrow e^{i \omega t}, e^{-i \omega t} \\
F(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(t) e^{-i \omega t} d t
\end{gathered}
$$

4. DFT

$$
\hat{f}_{k}=\sum_{j=0}^{n-1} f_{j} e^{\frac{-i 2 \pi j k}{n}} \quad \omega_{n}=e^{\frac{-2 \pi i}{n}}
$$

$$
\left[\begin{array}{l}
\hat{f}_{0} \\
\hat{f}_{1} \\
\hat{f}_{2} \\
\ldots \\
\hat{f}_{n-1}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \ldots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \ldots & \omega_{n}^{2(n-1)} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \ldots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{l}
f_{0} \\
f_{1} \\
f_{2} \\
\ldots \\
f_{n-1}
\end{array}\right]
$$

5. FFT

$$
\left[\begin{array}{l}
\hat{f}_{0} \\
\hat{f}_{1} \\
\hat{f}_{2} \\
\ldots \\
\hat{f}_{n-1}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \ldots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \ldots & \omega_{n}^{2(n-1)} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \ldots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{l}
f_{0} \\
f_{1} \\
f_{2} \\
\ldots \\
f_{n-1}
\end{array}\right]
$$

$$
\hat{f}_{n-1}=f_{0}+f_{1} \omega_{n}^{n-1}+f_{2} \omega_{n}^{2(n-1)}+\ldots+f_{n-1} \omega_{n}^{(n-1)(n-1)}
$$

$$
\begin{aligned}
A(x) & =\sum_{j=0}^{n-1} a_{j} x^{j} \\
& =a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
\end{aligned}
$$

1. Divide

$$
\begin{aligned}
& A_{\text {even }}(x)=\sum_{k=0} a_{2 k} x^{k}=\left\langle a_{0}, a_{2}, a_{4}, \ldots\right\rangle \\
& A_{\text {add }}(x)=\sum_{k=0} a_{2 k+1} x^{k}=\left\langle a_{1}, a_{3}, a_{5}, \ldots\right\rangle
\end{aligned}
$$

1. Conquer: recursively compute

$$
A_{\text {even }}(y) \& A_{\text {add }}(y) \text { for } y \in x^{2}=\left\{x^{2} \mid x \in X\right\}
$$

1. Combine

$$
\begin{gathered}
A(x)=A_{\text {even }}\left(x^{2}\right)+x * A_{\text {add }}\left(x^{2}\right) \\
\text { for } x \in X
\end{gathered}
$$

$T(n,|x|)=2 T(n / 2,|x|)+O(n+|x|)$

$T(n)=2 T(n / 2)+O(n)$

$N^{t h}$ Roots of Unity

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

$$
\omega=e^{\frac{2 \pi i}{n}}
$$

$$
\omega^{j+n / 2}=-\omega^{j} \rightarrow\left(\omega^{j}, \omega^{j+n / 2}\right) \text { are } \pm \text { paired }
$$

Evaluate $A_{\text {even }}\left(x^{2}\right)$ and $A_{\text {odd }}\left(x^{2}\right)$ at $\left[1, \omega^{2}, \omega^{4}, \ldots, \omega^{2(n-1)}\right]$
Evaluate $A(x)$ at $\left[1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right]$

$$
\hat{f}_{k}=\sum_{j=0}^{n-1} f_{j} e^{\frac{-i 2 \pi j k}{n}} \quad \omega_{n}=e^{\frac{-2 \pi i}{n}}
$$

$$
\left[\begin{array}{l}
\hat{f}_{0} \\
\hat{f}_{1} \\
\hat{f}_{2} \\
\ldots \\
\hat{f}_{n-1}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \ldots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \ldots & \omega_{n}^{2(n-1)} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \ldots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{l}
f_{0} \\
f_{1} \\
f_{2} \\
\ldots \\
f_{n-1}
\end{array}\right]
$$

$$
\begin{aligned}
A(x) & =\sum_{j=0}^{n-1} a_{j} x^{j} \\
& =a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
\end{aligned}
$$

6. Application

7. Implementation

Frequency Disturbance Recorder(FDR)

$\%$ Angle	1.3182
c ConvNum	7
C CurrentAng	0
CurrentMag	0
$\%$ Date	41323
8 FDRID	730
FFRName	"UsMTMduglendive730"
8 FPS	10
6 Frequency	60.0102
\% HasAngle	true
\& HasCurrentAng	false
\% HasCurrentMag	false
\% HasFreqAndAng	true
\% HasFrequency	true
$\%$ HasVoltage	true
- POWIList	null
- POWVList	null
$\%$ RelativeAngle	0
\& Time	140405
- TimeStamp	\{04/13/2023 14:04:05\}
\% TimestampFractionalSec	0.6
\% TimestampToSecond	\{04/13/2023 14:04:05\}
Q UserObj	null
\% Voltage	121.859
B _angle	1.3182
a _currentAng	0
B) _currentMag	0
8) frequency	60.0102
A _relativeAngle	0
B _valueStatus	7

https://fnetpublic.utk.edu/spectrum_map.html

8. References

[1] https://en.wikipedia.org/wiki/Fourier_series
[2] https://en.wikipedia.org/wiki/Fourier transform
[3] https://en.wikipedia.org/wiki/Discrete_Fourier transfo
[4] https://en.wikipedia.org/wiki/Fast Fourier transform
[5] https://eipi10.cn/mathematics/2020/04/19/fourier transform_2/
[6]https://blog.csdn.net/qq_29545231/article/details/108547437

Questions

1. Does the Fourier series prove that a non-periodic function is a sum of trigonometric functions?
2. What are the steps of divide \& conquer approach?
3. Based on Euler's formula, a general point on a complex plane can be represented in what format?

Thanks

4. DFT

$$
\begin{aligned}
& A(x)=\sum_{i=0}^{n-1} a_{j} x^{j} \\
& =a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
\end{aligned}
$$

$$
\hat{f}_{n-1}=f_{0}+f_{1} \omega_{n}^{n-1}+f_{2} \omega_{n}^{2(n-1)}+\ldots+f_{n-1} \omega_{n}^{(n-1)(n-1)}
$$

$$
\left[\begin{array}{l}
\hat{f}_{0} \\
\hat{f}_{1} \\
\hat{f}_{2} \\
\cdots \\
\hat{f}_{n-1}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \cdots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \cdots & \omega_{n}^{2(n-1)} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \cdots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{l}
f_{0} \\
f_{1} \\
f_{2} \\
\cdots \\
f_{n-1}
\end{array}\right]
$$

$$
\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t\left\{\begin{array}{l}
=0 \\
\neq 0
\end{array}\right.
$$

5. FFT

First, we are going to divide $f(x)$ into even $\&$ odd coefficients

Next, recursively compute A even and A odd for y in $x^{\wedge} 2$ where $x 2$ is the set of squares of all numbers in x.

Combine

Questions

1. Does the Fourier series prove that a non-periodic function is a sum of trigonometric functions?
2. What are the steps of divide \& conquer approach?
3. Based on Euler's formula, a general point on a complex plane can be represented in what format?

Background

Background

[5] The Scientist and Engineer's Guide to Digital Signal Processing. Steven W. Smith California Technical Pub., 1997 - Digital filters (Mathematics). Chap 8, Page 145.

[^0]: [1] https://en.wikipedia.org/wiki/Fourier series
 [2] https://en.wikipedia.org/wiki/Fourier transform
 [3] https://en.wikipedia.org/wiki/Discrete_Fourier_transfo
 [4] https://en.wikipedia.org/wiki/Fast_Fourier_transform

