N-body problems and simulation

Alexander Krneta, Daniel Mishler COSC581 - Algorithms

Questions

1. Who first discovered the N-body problem?

2. Let's say we have a system of nonuniform density. Which method would have faster performance: Barnes-Hut or the Fast Multipole Method?

3. In a three-dimensional problem, neither Barnes-Hut nor the Fast Multipole Method would use a quadtree. What structure would they use instead?

Danny's city – Evansville

<u>https://www.visidindiana.com</u> https://www.hyundaiofevansvi

ICL - DisCo

- Distributed Computing Group
- Task-based schedulers

Danny Mishler

- Music
- Jiu Jitsu
- Just Married

10 ALA

╇

Alexander Krneta

BS Physics - BS Computer Science MS Computer Science

Alexander Krneta

Christian

Maker

Reading

Music

Alexander Krneta

Exploring

Outline

- History
 - The N-body problem 0
- Overview
- Algorithms
 - **FMM History and Implementation** 0
 - **Barnes-Hut History and Implementation** Ο
- Applications
- Implementations
- **Open Issues**

17th century: Newton predicts motion of planets

- Newton comes up with equations for planets orbits with three points (analytical geometry)
- But he's wrong!
 - Interplanet gravitational interactions affect orbits, too
- Newton concludes all bodies must attract each other, says it's unsolvable analytically, and moves on

Sir Isaac Newton:

Late 19th century: Oscar II seeks a solution

- He was disappointed no one came up with a solution
- Henri Poincaré won, but by doing something else
- The general solution was 1990s

Too hard - here's something else

Overview

- Problem: n objects are interacting with each other
 - Gravity
 - Charged particles
 - Cells
- N-body **problem**: Find the trajectories of *n* objects which obey Newtonian Physics given their initial configurations and the forces
- N-body **simulation**: Find a pseudo-solution to the N-body **problem** by numerically simulating the *n* objects and the forces between them

N-body simulation: naive

Particle One "timestep"
{
 For each particle:
 Mass; Adjust velocity according to force
 Position; Adjust position according to velocity
 Velocity; Set force to 0
 Force
}
For each particle (a):

or each particle (a): For each particle (b): Adjust the force on (b) from (a)

History - FMM

- Expansion of Green's Function using Multipole Method
- Developed by Leslie F Greengard and Vladmir Rokhlin Jr.

- https://en.wikipedia.org/wiki/Leslie Greengard
- https://seas.yale.edu/faculty-research/faculty-directory/vladimir-rokhlin

FMM - an overview

• Use a Quadtree (balanced)

What is a Multipole Expansion

• Mathematic Series (often of infinite terms)

- Depending on angles, tells the force at a given point
- Often, **very few** terms are needed for high accuracy
- Relies on the Legendre Function

https://phys.libretexts.org/Bookshelves/Mathematical Physics and Pedagogy/Mathemati cal Methods/The Multipole Expansion

Multipole Expansions

• Credit: David Harrison, University of Toronto

$$egin{split} V_{ ext{mon}}(\mathbf{r}) &= rac{1}{4\pi\epsilon_0 r} \int_{V'}
ho(\mathbf{r}') dV' \ V_{ ext{dip}}(\mathbf{r}) &= -rac{1}{4\pi\epsilon_0 r^2} \int_{V'}
ho(\mathbf{r}') \left(\hat{\mathbf{r}}\cdot\mathbf{r}'
ight) dV' \ V_{ ext{quad}}(\mathbf{r}) &= rac{1}{8\pi\epsilon_0 r^3} \int_{V'}
ho(\mathbf{r}') \left(3(\hat{\mathbf{r}}\cdot\mathbf{r}')^2 - r'^2
ight) dV' \end{split}$$

History - Barnes-Hut

- Barnes-Hut
 - Josh Barnes and Piet Hut
 - o https://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation
 - We don't know much about Barnes

Piet Hut, Dutch-American Astrophysicist

Barnes-Hut: each point is in a box

• Also uses a quadtree, though not necessarily balanced

Barnes-Hut: Each quadtree vertex has CM

• Center of Mass is used to speed up calculations

Barnes-Hut: Can adjust how much approximation

• Parameter Theta determines how far away a tree vertex must be until the approximation is used

Applications

- Planetary simulation
- Climate simulation
- Atomic simulation
- Fluid dynamics

www.solarsystemscope.com

Implementations - FMM

Implementations - Barnes-Hut

Comparisons of methods

- Naive: O(n^2)
- Barnes-hut: O(n ln(n))
 - best for nonuniform density)
- Fast Multipole Method: O(n ln(n))
 - best for uniform density

Open Issues

- How can we simultaneously maximize fidelity and accuracy?
- What properties of a system can we exploit to improve our models?

Questions

1. Who first discovered the N-body problem?

2. Let's say we have a system of nonuniform density. Which method would have faster performance: Barnes-Hut or the Fast Multipole Method?

3. In a three-dimensional problem, neither Barnes-Hut nor the Fast Multipole Method would use a quadtree. What structure would they use instead?

References

