Symmetric Encryption Algorithms (AES)

Blake Childress and Ran Elgedawy

Questions

- What is the minimum key size supported by AES?
- What is the main difference between block cipher and stream cipher?
- How can you avoid key exhaustion?

Ran Elgedawy

- First year PhD student
- Advisor: Dr. Scott Ruoti
- Research interests: User security and privacy, and Applied machine learning

More about me :)

Alexandria Corniche

Arab Women Sports Tournament, Sharjah 2018

Interests

Edinburgh, Scotland

New Year's Eve

Ocoee, TN

Aspen Snowmass

Mount Rainier

Blake Childress

More About Moi

Outline

- 1. Overview
- 2. History
- 3. Background
- 4. Algorithm details
- 5. Applications
- 6. Implementation
- 7. Open Issues
- 8. References

Overview

Symmetric Key Encryption

Symmetric Key Encryption

	Data Encryption Standard (DES)	Advanced Encryption Standard (AES)	
Developed	1977	2000	
Key size	56 bits	128, 192, or 256 bits	
Block size	64 bits	128 bits	
Security	Proven inadequate	Considered secure	

History

History

- In 1997 NIST announced a competition to replace DES for both government and private-sector encryption.
- The algorithm must implement symmetric key cryptography as a block cipher and (at a minimum) support block sizes of 128 bits and key sizes of 128, 192, and 256 bits.

History

- Received 15 proposals from around the world
- On October 2, 2000, NIST selected
 Rijndael (invented by Joan Daemen and Vincent Rijmen) as the AES.

Background

Block Cipher

- Operate on fixed number of bits
- Fixed key
- Varying modes of operation

https://lwn.net/Articles/770750/

Stream Cipher

- Combine plaintext and keystream
- Operate on a single digit (bit) at a time
- Useful whenever data comes in unspecified length/quantity (e.g., WiFi)

https://www.javainterviewpoint.com/chacha20-encryption-and-decryption/

Algorithm details

Terms & Definitions

- Substitution permutation network
 - A network takes a block of the plaintext and the key as inputs, and applies several rounds of substitution boxes (S-boxes) and permutation boxes (P-boxes) to produce the ciphertext block
- S-box
 - Non-linear substitution table
- P-box
 - Bit shuffling to permute bits across S-box inputs

Algorithm

Algorithm - Add Round key

- Block data (stored in the state array) is passed through an XOR function with the first key generated.
- Resulting state array is input to the next step.

Algorithm - Sub Bytes

- Byte substitution using the S-Box
- S-box is represented as a 16x16 array, rows and columns indexed by hexadecimal bits

Algorithm - Shift Rows

S ₀	S_4	S ₈	S ₁₂
S ₁	S ₅	S ₉	S ₁₃
S ₂	S ₆	S ₁₀	S ₁₄
S ₃	S ₇	S ₁₁	S ₁₅

- circular left shift with 0 step
 - circular left shift with 1 steps
 - circular left shift with 2 steps
 - circular left shift with 3 steps

Image taken from: https://zerofruit.medium.com/what-is-aes-step-by-step-fcb2ba41bb20

Algorithm - Mix Columns

- Interpret columns as a vectors of length 4.
- Each column is replaced by another column obtained by multiplying that column with a predefined matrix

Image taken from: https://zerofruit.medium.co m/what-is-aes-step-by-ste p-fcb2ba41bb20

0

Applications

SSL/TLS Handshake

https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/

Disk Encryption

DS8800 storage cabinet

BitLocker recovery

Enter the recovery key for this drive

Use the number keys or function keys F1-F10 (use F10 for 0). Recovery key ID (to identify your key): ABD09F3E-C04C-4C8F-B2AE-CF0253006F7B

Here's how to find your key:

- Sign in on another device and go to: http://custom.url.contoso.com
- Try your Microsoft account at: aka.ms/myrecoverykey
- For more information go to: aka.ms/recoverykeyfaq

Windows BitLocker and Apple FileVault

Hardware-based Encryption

IBM 4758 Cryptographic Module

Example cryptoprocessor (top) and crypto Accelerator (bottom)

Implementation

AES

- Variant of Rijndael block cipher
- Fixed block size of 128 bits
- Key length may be 128, 192, or 256 bits

https://en.wikipedia.org/wiki/Advanced Encryption Standard

My AES Implementation

- C++
- Followed FIPS 197 AES standard
- ~16 kB source file

PRESENT

- Lightweight block cipher
- Published 2007
- Block size of 64 bits and key size of 80 or 128 bit

My PRESENT-80 Implementation

- Verilog (HDL)
- <u>https://github.com/saiedhk/PresentCrypto</u>
 <u>Engine</u>
- ~3.4 kB

Open Issues

Attacks

- Known-plaintext
- Chosen-plaintext
- Differential cryptanalysis
- Linear cryptanalysis

Known-Plaintext Attack

Chosen-Plaintext Attack

Key Exhaustion

- If we use the same key to encrypt data, it may be possible to derive it after so much information is processed
- Attacker requires access "enough" encrypted data
- Rotate/make new keys!

Key Management

- Must keep symmetric-key secure
- Mitigated with Diffie-Hellman or similar asymmetric protocol

Symmetric and Asymmetric encryption

References

- Dr. Scott Ruoti's AES notes
- <u>https://en.wikipedia.org/wiki/Advanced_En</u>
 <u>cryption_Standard</u>
- <u>https://en.wikipedia.org/wiki/PRESENT</u>
- <u>https://nvlpubs.nist.gov/nistpubs/fips/nist.fi</u>
 <u>ps.197.pdf</u>
- <u>https://soatok.blog/2020/12/24/cryptograp</u> <u>hic-wear-out-for-symmetric-encryption/</u>

Thank you. Any questions?

