
Lu Liu, Kyungchan Lim

Process Parallelization

Test Questions

1. What is the purpose of Amdahl's Law?
2. What is the possible issue with parallel processing?
3. Which method during the implementation gave the best result?

Kyungchan Lim

- Second year Ph.D. student

- Advisor: Dr. Doowon Kim

- Research Area: Data Driven Security and Measurement Study

Places where I’ve been
Seoul,
South Korea
Originally from South Korea

Royal Oak, MI
Went to high school in Royal
Oak, MI

Albany, NY
Graduated B.S. and M.S. from
University at Albany in NY

About Kyungchan Lim
Christian

Have one wife and two cats

Love to eat and cook

Loved cars

Lu Liu
- From Denver, CO. Originally from

Jinan, Shandong, China

Advised by Dr. Doowon Kim Working for Dr.
Stephen Marz as GTA

- First year Ph.D. student in Computer
Science.

- Research focuses on cybersecurity
and computer networks, especially
data-driven and usable security.

One of the volunteers
responsible for the PhD
Tea Time organized by Dr.
Sai Swaminathan

Hometown - Jinan

Jinan is the capital of Shandong province in Eastern
China. With a population of 9.2 million, it is the
second-largest city in Shandong.

It is also called the "City of Springs" for its famous 72
artesian springs.

Sister city: Sacramento, California (October 2, 1984)

Baotu Spring

Indiana University - B.S.
in Business (BEPP)
Bloomington, IN

Northeastern University
- M.S in Information Systems
Boston, MA

- Hiking
- Skiing
Ikon pass holder. Favorite resorts are
Copper and Aspen Snowmass
- Favorite foods: Sashimi, Unagi Don,
Okonomiyaki

Sushi Den

- Ice Skating
- Swimming
- Baking
- Cooking
- Cocktail

- Dog lover, particularly
of the Corgi breed

- LEGO Lover
- Stand-Up Comedy
- Pop music
- Maroon 5

Jimmy O. Yang

Overview History
Form 1960s to 2020s

Applications
Machine Learning,

Cryptocurrency

Implementations
Parallel Processing in Machine

Learning

Outline

01 02

04 05

Algorithms
03

Open Issues
06

Overview
● Parallel processing is a computing technique when multiple streams of calculations or data processing tasks co-

occur through numerous processors working concurrently from serial processors.
● Amdahl's Law: Predict theoretical speed up on performance improvement achievable through parallelization.
● Vector Processing: Performing the same operation on multiple data elements simultaneously.
● Symmetric Multiprocessing (SMP): Multiple processors sharing memory, working on a single task.
● Massively Parallel Processing (MPP): Large-scale parallel processing using thousands of processors.
● Multicore Processors: A single chip containing multiple processor cores.
● Heterogeneous Computing: Combining CPUs and GPUs for efficient parallel workloads.
● OpenMP: API for creating parallel programs on shared-memory architectures.

Applications:
- High-Performance Computing (HPC)
- Graphics Processing Units (GPUs)
- Big Data
- Machine Learning
- Cryptography

Reference: https://towardsdatascience.com/parallelization-w-multiprocessing-in-python-bd2fc234f516

https://towardsdatascience.com/parallelization-w-multiprocessing-in-python-bd2fc234f516

1960s - Early ideas and research
- Researchers start exploring the idea of parallel processing to
improve computer performance.
Amdahl’s Law was introduced in 1967 (by Gene Amdahl)

1970s - First Parallel Computer
- ILLIAC IV supercomputer is completed.
- Cray-1 supercomputer introduces vector processing.

1990s - Multiprocessor systems and software1980s - Advancements and commercialization
- Symmetric multiprocessing (SMP) systems become common.
- OpenMP API is introduced for parallel programming.

History

2000s - Multicore processors and GPUs 2010s - Heterogeneous computing and big
data

2020s - Continued development and new
architectures

- IBM's POWER4 processor, an early commercial multicore
processor, is released.
- NVIDIA's CUDA platform enables GPU parallel computing.

- Connection Machine CM-1 is launched with a massively
parallel architecture. (by Danny Hillis)

- Heterogeneous computing gains traction.
- Big data and machine learning drive demand for parallel
processing.

Important Contributors

- The TOP 500 project ranks 500 most powerful non-
distributed computers in the world (supercomputers)
- Since June 2022, ORNL’s Frontier is top performing
supercomputer

- Exploration of alternative approaches like neuromorphic and
quantum computing.

Algorithms
● Basic idea on how Parallel processing works:

○ In a multiprocessor environment, run a serial process into multiple processes to speed up the process
● Multithreaded algorithms introduced in our textbook:

○ Multithreaded Matrix Multiplication
○ Multithreading Strassen’s Method
○ Multithreaded Merge Sort

● Benefits on using Multithreaded (or Parallel) algorithms:
○ Save time on serial algorithm by processing them into parallel

● Possible Issues:
○ Mainly caused by communication between processors (e.g., Load Balancing Issues)
○ Race Condition Bug

● Key steps on how parallel processing works
○ Divide parent process into multiple child process
○ Communicate between child processes to keep track which process are running
○ Load balancing between processes

● To predict theoretical speedup, Amdahl’s Law can be used
○ 1/((1-P) + P/S)
○ P is the percentage of work in parallel
○ S is number of workers

Algorithms

● The multiprocessing module in Python:
○ Forking: The multiprocessing module uses the fork() system call to create new processes. When a new

process is created, it is an exact copy of the parent process, including all open files and resources.
○ Process management: The process manager maintains a list of all active processes and their state,

and provides methods for starting and stopping processes, as well as for passing data between them.
○ Interprocess communication: The multiprocessing module uses interprocess communication with

shared memory and synchronization.
○ Parallelism: The module provides a Pool class that allows the user to create a pool of worker

processes, each of which can execute a target function on a separate input.
○ Load balancing: The multiprocessing module uses load balancing techniques to distribute tasks

evenly among the available worker processes.
○ Overall, the multiprocessing module in Python is designed to provide an efficient and easy-to-use

framework for managing and coordinating parallel processes. By using a combination of algorithms
and techniques, it allows Python programs to take advantage of modern multi-core processors and
parallel computing architectures to achieve higher performance and throughput.

Algorithms (example)

Algorithms (Benefits)
● Benefits with using parallel processing

○ Save time on serial algorithm by processing them into parallel
○ Solve more complex problems
○ Allows more resources to be used to solve problems

Algorithms (Issues)
● Communication

○ Parallel algorithms need extra resources to communicate between processors
○ Therefore the estimated time of using two cores is not double the speed of single core

● Load Balancing Issue
○ If input size is not balanced (not even), then the work is unbalanced
○ Some processors will do more work than others
○ We are wasting processes when we have less working processors idle

● Race Condition Bug
○ If one of processors execute the code with different amount of time than expected, it can cause

unexpected behavior
○ This unexpected behavior can result in security issues

Reference: https://www.researchgate.net/figure/Parallel-computing-models-a-distributed-memory-and-b-shared-memory_fig3_329351248

1. Machine Learning
a. Training Neural Networks
● High computational demand for large datasets and complex models.
● Parallel processing accelerates training by processing data concurrently.
● Data parallelism and model parallelism

1. Cryptocurrency
a. Risk calculations and cryptocurrencies in banking
● Most of today’s banking processes, like credit scoring, risk modeling, are GPU-accelerated.
● One of the early adopters was JPMorgan Chase, which said in 2011 that it was switching from CPU-only

processing to hybrid GPU-CPU processing. This resulted in a 40% improvement in the accuracy at its
data centers in terms of risk calculations and enabled savings of 80%.

a. Bitcoin
● The crypto-mining frenzy, a 2019-2020 financial trend, also put GPUs in the spotlight. Blockchain and

Bitcoin don’t work without parallel computing. In a serial computing world, the “chain” part of
blockchain would evaporate.

Applications

Implementations - Dataset
The dataset contains CSV files for specific Bitcoin exchanges from January 2012 to March 2021, updating OHLC (Open, High,
Low, Close), BTC volume and indicated currency, and Bitcoin weighted prices per minute. The timestamp takes Unix time

4857377 x 8 → 486390 x 7

Implementations - Random Forest
Initialize parameters

GridSearchCV compare different parameters, number of CPU

Best parameters

Implementations - Parallel
Three methods:

- Multiprocessing Pool Parallel

- Joblib Parallel

- Pathos Pool Parallel

● Import packages

● Set parameters

● Definite function

Implementations - Multiprocessing
Pool.map

Implementations - Joblib
Parallel, delayed

Implementations - Pathos ProcessPool
Pool.map

Implementations - Visualization
Number
of CPU

Multiprocessing Joblib Pathos

1 1 1 1

2 1.89899 1.68995 1.90066

4 3.48178 2.55992 3.43502

8 3.49530 4.63580 3.30694

16 3.46703 4.62896 3.45445

Parallel Performance Visualization

Speedup Visualization

1. Communication
❏ Challenges: communication requires overhead, processor may need to wait for other process
❏ Possible Solution: use shared memory method to share a memory space to communicate

2. Load Balancing Issue
❏ Challenges: If input size is not balanced (not even), then the work is unbalanced
❏ Possible Solution: use a static/dynamic load balancing (dynamic has advantage but requires

monitor the performance)
3. Race Condition Bug

❏ Challenges: If one of processors execute the code with different amount of time than expected, it
can cause unexpected behavior

❏ Possible Solution: use synchronization mechanisms to keep processors synchronized

Open Issues

References
https://towardsdatascience.com/parallelization-w-multiprocessing-in-python-bd2fc234f516

http://webdocs.cs.ualberta.ca/~paullu/C681/parallel.timeline.html

https://en.wikipedia.org/wiki/Parallel_computing#:~:text=Michael%20J.,now%20known%20as%20Flynn's%20taxonomy.

https://computerscience.chemeketa.edu/cs160Reader/ParallelProcessing/AmdahlsLaw.html
https://www.sitepoint.com/python-multiprocessing-parallel-programming/

http://www.umsl.edu/~siegelj/CS4740_5740/Overview/Background.html

https://computer.howstuffworks.com/parallel-processing.htm

https://docs.python.org/3/library/multiprocessing.html

https://www.spiceworks.com/tech/iot/articles/what-is-parallel-processing/

https://towardsdatascience.com/parallelization-w-multiprocessing-in-python-bd2fc234f516
http://webdocs.cs.ualberta.ca/~paullu/C681/parallel.timeline.html
https://en.wikipedia.org/wiki/Parallel_computing
https://computerscience.chemeketa.edu/cs160Reader/ParallelProcessing/AmdahlsLaw.html
https://www.sitepoint.com/python-multiprocessing-parallel-programming/
http://www.umsl.edu/~siegelj/CS4740_5740/Overview/Background.html
https://computer.howstuffworks.com/parallel-processing.htm
https://docs.python.org/3/library/multiprocessing.html
https://www.spiceworks.com/tech/iot/articles/what-is-parallel-processing/

Discussion

Test Questions

1. What is the purpose of Amdahl's Law?
2. What is the possible issue with parallel processing?
3. Which method during the implementation gave the best result?

