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Abstract The collective action problem can easily undermine cooperation in groups. Recent
work has shown that within-group heterogeneity can under some conditions promote vol-
untary provisioning of collective goods. Here we generalize this work for the case when
individuals can not only contribute to the production of collective goods, but also punish
free-riders. To do this, we extend the standard theory by allowing individuals to have limited
foresight so they can anticipate actions of their group-mates. For humans, this is a realistic
assumption because we possess a “theory of mind”. We use agent-based simulations to study
collective actions that aim to overcome challenges fromnature orwin competitionwith neigh-
boring groups. We contrast the dynamics of collective action in egalitarian and hierarchical
groups. We show that foresight allows groups to overcome both the first- and second-order
free-rider problems. While foresight increases cooperation, it does not necessarily result in
higher payoffs. We show that while between-group conflicts promotes within-group cooper-
ation, the effects of cultural group selection on cooperation are relatively small. Our models
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predict the emergence of a division of labor in which more powerful individuals specialize in
punishment while less powerful individuals mostly contribute to the production of collective
goods.

Keywords Cooperation · Conflict · Theory of mind · Modeling · Cultural group selection

1 Introduction

Working as a group can be highly profitable due to economy of scale. However, there are
several obstacles that must be overcome in order to obtain such a benefit. For example, group
members have to be able to effectively coordinate their actions, resolve potential conflicts,
and minimize free-riding. Within-group free-riding (which often comes under a rubric of
“collective action problem”, [71]) can undermine cooperation whenever individual effort
is costly and individuals can benefit from the effort of their group-mates. In this case, all
individuals are faced with the temptation to reduce or eliminate their efforts. However, if
a substantial proportion of group members follow this logic, the group benefit will not be
produced and everybodywill suffer. Collective action problem is common inmany animal and
human groups [5,27,35,43,68,71,73,96]. Nevertheless, cooperation in groups is widespread
[14,88,95]. Understanding its origins and maintenance is viewed as a fundamental challenge
in the fields of both social and biological sciences [5,13,35,43,68,71,73].

Accordingly, an extensive body of work exists that explores the different mechanisms
capable of promoting and maintaining cooperation. Classical work in economics emphasizes
selective incentives (i.e., benefits and punishment) as well as institutional design as solutions
to collective action problems [71,73,90]. More recent work in evolutionary biology focuses
on kin selection, direct and indirect reciprocity, group selection and also punishment [5,60].
Adding to this list is a body of literature which explores the influence of within-group hetero-
geneity [1,20,25,27,29,61]. Intuition suggests, and experimental work has shown, that the
costs and benefits of cooperation affect participants’ willingness to contribute to a collective
good. Additionally, the presence of influential individuals [32,98,100] and differences in
the cost of punishing [17,20] can each result in cooperation being more easily established
and maintained because some individuals may be more willing to contribute than others.
These findings suggest that in addition to being more realistic, the inclusion of within-group
heterogeneity is key to understanding how groups cooperate.

Our primary goal here is to extend recent theoretical work on voluntary provisioning of
collective goods in heterogeneous groups [27,29] for the case when individuals can punish
free-riders. Mathematical models have already shown that punishing can be an effective tool
for promoting the evolution of cooperation [7,8,24,66,84]. This conclusion is supported by
experimental studies on cooperative behavior in both humans [23,72] and non-human animals
[12,63]. Despite this work, the motivations behind why any one individual would choose to
punish remains a source of much debate.While punishment may discourage the future selfish
behavior of others, it comes with a personal price as the act of administering punishment
requires some expenditure of effort. For this reason, it is more beneficial to abstain from
punishing in the same way it can be to abstain from contributing to production of a collective
good, resulting in a second-order free-rider problem. Proposed solutions to this second- (and
higher-) order free-rider problem include meta-punishment [6], conformism [44], signaling
[36,86] and group-selection [7,34,88].
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Below, we offer a different solution to the second-order free-rider problem. It is motivated
by the idea that individuals often punish others in order to modify their future behavior [16].
This is also known as deterrence theory (see [65] for a review) and utilizes what Axelrod [3]
referred to as “the shadow of the future.” Examples of such punishment abound in modern
society, from penal systems to the grounding of one’s child. In line with this, laboratory
experiments have shown that individuals view punishment and the threat of punishment as
way to deter future bad behavior [16,22,92,93]. For example, in an experiment performed by
Krasnow et al. [54], participants played a trust game with a partner, who could cooperate or
defect. Following this initial decision, participants could punish partners who had defected.
Then participants played another round of the trust game with the same partner. Results
show that participants were equally trusting of both partners who had previously cooperated
and those who had been punished following defection [54]. The participants’ willingness to
trust those who had been punished indicates their belief that the act of punishing would be
effective at preventing future selfish behavior.

The understanding that others will change their actions in response to one’s own actions is
a consequence of humans’ “theory of mind”. The latter refers to the ability to reason about the
knowledge and thought processes of others and is a well established trait in humans [77,91],
and recently was even suggested in great apes [9,55]. Humans can also use the theory of mind
recursively [41,76], which entails thinking about how others think about you. This ability is
thought to be key in promoting cooperation within groups [91].

Here, we develop and study an agent-based model in which individuals both value future
payoffs and are aware of their influence over their group-mates’ future actions. We seek
to explore the effects such cognitive capabilities have on cooperation in groups facing a
collective action problem. Our results suggest that the capability to anticipate future actions
of group-mates (i.e. foresight) results in a higher willingness to enforce cooperation via
punishment. Hence, foresight effectively provides a solution to the second-order free-rider
problem that does not depend on meta-punishment, signaling, conformism, or cultural group
selection. While foresight increases cooperation, the ability of foresight does not necessarily
lead to higher payoffs.We also show that within-group heterogeneity results in an impromptu
division of labor where dominant individuals take charge of punishment and others are forced
to focus on contributing to the public good production.

2 The Basic Model

Below we start by specifying a basic set of models of collective action without foresight.
We describe the corresponding results for egalitarian and hierarchical groups focusing on
the effects of different parameters. Later we will build on these results to show that foresight
dramatically changes the resulting social dynamics.

2.1 No Punishment and No Foresight

We will use a common framework for studying collective action [2,27–30,53,94]. We con-
sider a population of individuals living in a large collection of G groups, each with fixed size
N . These groups are engaged in collective actions, potentially affecting both individual and
group survival and reproduction. Such a set-up results in multi-level selection pressures at
both the within- and between-group levels. Pressures at the between-group level encourage
individuals to make large contributions, while at the within-group level there is a strong
incentive for individuals to free-ride. We allow for groups to be either egalitarian, so that all
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individuals receive an equal share of produced goods, or hierarchical, so that each individual’s
share depends on their rank (or strength).
Collective actions.We consider two types of collective action [27,28].The first type focuses
on group activities such as hunting and gathering, defense from predators and, build-
ing/maintaining shelter. The success of an individual group in these activities is largely
unaffected by the action of neighboring groups. For this reason, we refer to these actions
as “us vs nature” games. In contrast, limited space, resources, and mating opportunities can
result in competition between groups of conspecifics. This means that as the efforts of one
group rises (ceteris paribus), the resources available to neighboring groups decrease. Since
the success of a particular group depends upon the actions of its neighbors we refer such
games as “us vs them”. Mathematically, in “us vs nature” actions, group members participate
in a generalized public goods game. In “us vs them” actions, two groups compete in a contest
[53,80] over a resource. The key distinction between these two types of collective action is
that in the former the absolute group effort is critical for obtaining resources, while in the
latter it is the group effort relative to that of the other competing group that matters.

Let xi, j be a nonnegative number representing the effort expended by individual i in group
j . This contribution comes at a personal cost of cxi, j , where c is a constant parameter, that
is, we assume the cost grows linearly with the effort. The combined efforts of the group
members, i.e., the impact function, is X j = ∑

i xi, j . In “us vs nature” games, the maximum
available benefit is B and the share obtained by group j is defined as

Pj = X j

X j + X0
, (1)

where X0 is the half-success effort, i.e. the group proficiency required for Pj = 50%. The
larger X0, themore group effort is required to secure the reward. For example,when a resource
is abundant, less effort (resulting from fewer contributors or smaller average contribution)
would be required to obtain a sufficient amount. However, when a resource is rare, a larger
expenditure of effort may be necessary to successfully seek it out.

In “us vs them” games, the maximum available benefit is 2B, and the share won by group
j when in competition with group k is

Pj = X j

X j + Xk
. (2)

This can also be interpreted as the proportion of fights where group j is able to beat group k.
Individual payoffs. Individual payoffs are defined as

Πi j = 1 + B̃ Pjvi − cxi j , (3)

where B̃ = B in “us vs nature” games and B̃ = 2B in “us vs them” games, and vi is
the proportion of the reward allotted to individual i (or its valuation). In egalitarian groups,
everybody gets an equal share, vi = 1/n. We will also consider heterogeneous groups in
which individuals will differ in vi . It is useful to define the term b = B/n, which is the
expected benefit per individual in an egalitarian group playing an “us vs them” game against
a group making an equally strong effort. In presenting our results, we will use the relative
payoffs πi j = Πi j/

∑
j Πi j .

Events. To increase the realism of our models, we formulate them in continuous time and
model social dynamics using an event-driven approach [33]. [We note also that the more
commonly used synchronous updating may result in some spurious effects (e.g. cycling)
which is not desirable.] There are three types of events. At each time step, with probability
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E1 a randomly chosen group participates in an “us vs. nature” game, while with probability
E2 a randomly chosen pair of groups participate in an “us vs. them” game. Lastly, with
probability E3 a randomly chosen poorly performing group copies the strategies of another
randomly chosen, but well-performing group. When such a “cultural group selection” [79]
event occurs, the chances to be chosen to copy another group are proportional to e−Pj and
those of being copied are proportional to ePj . We treat probabilities E1, E2, and E3 as
exogenously specified constants. Naturally, E1 + E2 + E3 = 1. It will be useful to define
the ratio E = E1 : E2 of the frequencies of “us vs. nature” to “us vs. them” games (which
we will refer to as the “game frequencies ratio”) for when we begin to explore the effects the
frequencies of these events have on group dynamics.
Strategy revision. To increase the realism of our models, we also assume that our individuals
are bounded rational (rather than, say, hard-wired genetically to behave in a particular way).
After both “us vs nature” and “us vs them” events, eachmember of the affected group(s) inde-
pendently updates their strategies with probability μ. We start by using myopic optimization
(best response) with a finite number of “candidate strategies”. [We note that myopic opti-
mization and genetic selection often lead to very similar equilibria (e.g., if the underlying
game is potential [46,99].)] For example, assume that the action taken by individual i was
contributing effort xi,0 to a collective action. Candidate strategies are randomly and inde-
pendently drawn from a normal distribution centered at an individual’s current strategy xi,0
and with a standard deviation of σ . We draw K new “candidate strategies” xi,1, . . . , xi,K
and then evaluate the associated K + 1 expected payoffs Πi,k (including the payoff for the
original xi,0 strategy), assuming that all other individuals keep their strategies from the prior
round. That is, members of groups that just played consider how each of their candidate
strategies would have fared in the event that just took place. Being able to assess this requires
each individual to know their own effort as well as the total effort of their group (and of the
competing group).

From these K + 1 strategies, individual i will choose one at random with probabilities
proportional to eλΠi,k , where λ is a parameter measuring the precision in evaluating the
payoffs. Increasing λ increases the probability that a candidate strategy with the highest
payoffs is chosen. This approach is a version of the Quantal Response Equilibrium (QRE)
developed in the field of economics and serves as a way to incorporate mistakes players
make when comparing potential strategies [39,62]. In our models, the standard deviation in
the candidate strategies’ expected payoffs is relatively small, which necessitates the use of
relatively large λ values. In particular, we consider such values as λ = 10, 20, 40, 80. In
order to gain additional insight, we also examine the case when λ = ∞, which corresponds
to when agents make no errors always choosing myopically the best strategy available to
them.

To study our model we use agent-based simulations (more details are provided in the
Supplementary Information, SI). Although similar to that in Gavrilets and Fortunato [29]
and Gavrilets [27], our approach differs in several important aspects. First, we assume that
events happen asynchronously. Second, we allow for groups to play both types of games
rather than a single type of game. Our approach introduces new parameters—the frequencies
of different events E1, E2 and E3. Third, we focus on evolution by myopic optimization
instead of genetic evolution. This means that strategies do not evolve as a consequence of
random mutation and natural selection, but rather individuals choose strategies attempting
to maximize their payoffs. Our approach also introduces parameters λ, agents’ precision
in evaluating potential payoffs, and K , the number of new candidate strategies considered.
Table 1 summarizes variables, functions and parameters for themodel we introduce and study
here.
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Table 1 Model variables, functions and parameters

Symbols Their meaning Numerical values

xi Individual production effort (xi ≥ 0)

yi Individual punishment threshold (yi ≥ 0); i punishes j
if j th effort is too low, i.e., if x j < yi , and i is
sufficiently strong relative to j , i.e., si > s j + ξ ,
where ξ ∼ N (0, ε).

X Total group effort, X = ∑
x

P(X) Normalized value of the resource produced or secured
by the group: P = X/(X + X0) in “us vs. nature”
games; P = X/X in “us vs. them” games

vi Share of the reward going to i ; depends on relative

strength si : vi = sβi /
∑

sβj
Πi Expected payoff; e.g. expected payoff from production

is Πi = 1 + bP(X)vi − cxi
κi j Cost to i of being punished by j , κi j = e(yi − x j )

(“graduated punishment”)

δi j Cost to i of punishing j , δi j = κi j Si j with
Si j = S0 exp[φ(s j − si )], so that punishing a weaker
opponent is relatively cheap

Ui Utility with foresight, U = (1 − ω)Π
(1)
i + ωΠ

(2)
i

n Group size 4, 8, 16

b Benefit parameter for production 0.0 : 0.25 : 2
c Cost parameter for production 0.5, 1.0

X0 Half-effort parameter in “us vs. nature” games 1

E The ratio E = E1 : E2 of probabilities of participation
in “us vs. nature” and “us vs. them” events

1:0, 3:1, 1:1, 1:3,0:1

E3 Probability that the group participates in “cultural group
selection” events

0.0,0.05,0.1,0.15,0.2

si Individual strength, si ∼ U [0, 1]
ε Error in strength evaluation 0.1

β Degree of inequality; the egalitarian case corresponds to
β = 0 and vi = 1/n

0, 1, 2, 4

e, φ, S0 Cost of punishment parameters 1, 5, 1

ω Weight of future payoffs in the utility function 0, 0.25, 0.5

λ Precision parameter in the QRE approach in which the
probability of choosing a candidate strategy k is
proportional to exp(λΠk ) or exp(λUk )

10, 20, 40, 80, ∞

K Number of candidate strategies 1, 2, 4, 8, 16

σ Standard deviation in innovation
(x ′ = x + N (0, σ ), y′ = y + N (0, σ ))

0.5

μ Probability of strategy updating 0.5

Results for egalitarian groups. First we describe what happens in the case of equal division
of the group reward. From earlier work focusing on games of one type only, we know that in
“us vs. them” games, the equilibrium group contribution X∗ = b/(2c) and is always positive.
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Fig. 1 Group efforts X in the egalitarian case as influenced by group size N , the precision parameter λ, the
game frequencies ratio E (first row of graphs, with E3 = 0.1, K = 2), the frequency E3 of cultural group
selection events (second row of graphs, with N = 8, K = 2), and the number of candidate strategies K (third
row of graphs, with E = 1 : 1, E3 = 0.1) Results are the averages of 20 simulations using: b = 1.0, c = 0.5
and X0 = 1.0

In “us vs. nature” games, X∗ = X0(
√
R − 1), where R = b/(cX0), so that X∗ is positive

only if the benefit-to-cost ratio R is big enough [27–29]. Here to better elucidate the impact
of the parameters E, λ, and K we have chosen the values of b, c and X0 so that contributions
are always positive (see the SI for more results). All graphs below report the average values
evaluated over a certain number of time steps at the end of the simulations.

Figure 1 illustrates the effects on the total group effort X of precision λ and additional
parameters. [Note the meaning of each color differs between the rows.] In this figure, the
graphs (from left to right) correspond to the cases of λ = ∞, 40, 10 meaning the precision
in evaluating payoffs decreases as we move to the right. We see that decreasing precision
results in increased contributions. This happens because errors in strategy evaluation bias
individual contributions towards over-production (due to the fact that negative contributions
are not possible). We also see moderate increases in the total group effort in response to
group size N . This is because in larger groups, more individuals make errors. The first row
of graphs in Fig. 1 shows that increasing the frequency of “us vs. them” events (specified
by the game frequency ratio E) increases the total group effort. This is in line with previous
findings [27,28]. The second row of graphs in Fig. 1 shows that the frequency of cultural
group selection events E3 affects the efforts only for small λ but the overall effects are small.
This implies that in this model, the effects of cultural group selection on cooperation are
insignificant.

The third row of graphs in Fig. 1 illustrates the impact of the number of candidate strategies
K . When individuals are imprecise (λ < ∞) we see that K has a nonlinear effect: increasing
K increases the group effort with small errors (λ = 40) but decreases it with large errors
(λ = 10). The case when individuals make no errors (λ = ∞) is more nuanced and depends
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Fig. 2 Effects of group size N , the precision parameter λ, and the game frequencies ratio E on the group
efforts X and relative payoffs π of individuals of different ranks in the basic hierarchical model. For each
group size, the bars (from left to right) correspond to E = 1 : 0, 3 : 1, 1 : 1, 1 : 3, 0 : 1. The segments of each
bar correspond to a particular individual with the strongest at the bottom (purple) and the weakest at the top.
Results are the averages of 20 simulations using: b = 1.0, β = 1.0, c = 0.5, X0 = 1, K = 2 and E3 = 0.1
(Color figure online)

upon the games frequencies ratio E . When groups only participate in “us vs. nature games
(E = 1 : 0), we see that K has no effect. This is to be expected as “best responders” are
expected to converge on the optimal contribution regardless of howmany candidate strategies
they evaluate. However, when competition with neighboring groups is introduced, increasing
K unexpectedly increases group efforts. The intuition behind this effect is that with groups
constantly facing different opponents, “fine tuning” of individual behavior within each group
(expected with large K ) prevents convergence to an equilibrium. As a result, the system
exhibits nonlinear dynamics (see Figs. S2 and S3 in the SI).
Results with within-group heterogeneity. In real life, individuals are not identical in their
strengths and abilities and this heterogeneity impacts social behavior. For example, stronger
individuals can grab a large share of the reward or can make larger efforts because it costs
them less. In our model, we postulate that group members differ in their strength si . An
individual’s strength is a constant assigned by drawing a random number from the uniform
distribution over [0, 1]. We rank individuals according to their strengths. Following Gavrilets
and Fortunato [29], we set individual shares vi (or valuations of the reward) based on their
relative strengths:

vi = sβ
i

∑
k s

β
k

, (4)

where parameter β determines the steepness of the hierarchy, i.e. the degree of inequality
within the group [29]. Note if β = 0, then all shares are identical (as in the egalitarian case
above), but if β > 1 stronger individuals obtain disproportionately larger shares of resources.

Figure 2 is analogous to the first row of Fig. 1 but now we show efforts of individuals of
different ranks (averaged across all groups) as well as their relative payoffs πi (i.e. shares of
the reward) using different colors (the strongest individuals are at the bottom of each column).
We see that heterogeneity results in the most dominant individual contributing almost all of
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Fig. 3 Effects of the average benefit b, the precision parameter λ, and the hierarchy steepness β on the average
group effort X and relative payoffs π of individuals of different ranks in the basic hierarchical model. For
each value of b, the bars (from left to right) correspond to β = 1, 2, 4. The segments of each bar correspond
to a particular individual with the dominant at the bottom (purple) and the weakest at the top. Results are the
averages of 20 simulations using: N = 8, c = 0.5, K = 2, E = 1 : 1 and E3 = 0.1 (Color figure online)

the effort while the rest of the group free-rides. The severity to which the rest of the group
free-rides off of the efforts of the dominant individual increases in response to increased
precision λ. This pattern is expected as more rational subordinate individuals would seek to
fully capitalize on the dominant individual’s willingness to contribute. This is an example of
Olson’s (1965) “exploitation of the great by the small”. In some cases, the most dominant
individual ends up with a smaller payoff then one or more of its subordinates in spite of
receiving the biggest share of the reward, a pattern named an “altruistic bully” effect [29].
This can happen regardless of the group size N or precision parameter λ. Contributions by the
dominant are driven by competition with other groups since increases in the frequency E of
“us vs them” events increase efforts in all cases. Decreasing precision λ increases individual
contributions of non-dominant individualswho now contribute to collective action bymistake
(see also Fig S4 in the SI). In contrast, with higher precisions dominant individuals bear an
even larger share of the group’s burden (Fig. 2a–c). The total group effort does not depends on
the group size when precision parameter λ is large and weakly increases with low λ as more
individuals contribute by error in larger groups. Increasing the number of candidate strategies
K results in individuals contributing less effort towards the common good (Fig. S5 in the SI).
The effects of the frequency E3 of cultural group selection events in the hierarchical model
are similar to those in the egalitarian case and small (see Fig. S6 in the SI).

Figure 3 focuses on the effects of benefit b and the parameter β, which measures the
steepness of a group’s hierarchy, i.e. the inequality present amongst group-mates. We see
increasing inequality β results in increasing total group effort [27,29] with dominant indi-
viduals contributing most of it.

2.2 Incorporating Punishment

Next we add the possibility of punishment. We utilize graduated punishment [26,42,48,
83]) as it represents the most appropriate approach for dealing with continuous production
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efforts (rather than discrete). Specifically, we postulate that each individual has an evolving
“punishment threshold” trait yi and is motivated to punish any other group-mate whose effort
x j is smaller than yi . If individual i punishes individual j , j’s payoff is reduced by

κi j = e(yi − x j ), (5)

where e > 0 is a scaling parameter. That is, the smaller the effort x j of j relative to the
punishment threshold yi of i , the larger the cost κi j . We assume the act of punishing others
is costly. We denote the corresponding payoff loss to i as δi j .

In standard models of graduated punishment, any individual can punish any other indi-
vidual. In real life however, individuals vary greatly in their strengths and capabilities, and
while strong individuals can often easily punish weak individuals, punishment of the strong
by the weak is unlikely. To capture this idea, we assume that individual i is willing to punish
individual j only if

si > s j + ξ, (6)

where ξ is a randomnumber froma normal distributionwith zeromean and standard deviation
ε. One way to interpret this model is that i is willing to punish j only if i believes it is stronger
than j with ξ being the error in evaluating relative strengths.

Moreover, we postulate that the cost to punisher i depends on the severity of punishment
κi j and the difference in strengths, si − s j :

δi j = κi j Si j , (7)

where
Si j = S0 exp[φ(s j − si )]. (8)

Here S0 is the baseline factor of punishing (equal to the cost of punishing an individual equal
in strength) and φ is a scaling parameter (the larger φ, the faster the cost to i declines with the
difference in strengths). This formulation implies that punishing of the weak by the strong
is relatively cheap.

In this extension of our basic model, each individual is characterized by a pair of strategies
(xi , yi ) specifying their contribution to the collective action and punishment threshold. Cor-
respondingly, in updating individual strategies, agents will consider K pairs of randomly
generated candidate strategies (xi,1, yi,1), . . . , (xi,K , yi,K ) plus the original strategy pair
(xi , yi ), and select one of them with probabilities proportional to their expected payoffs
as we had done previously in Sect. 2.1.

Our numerical results for this model show that punishment can happen only by error
when individuals have low levels of precision λ (see below). This makes sense because of
the second-order free-riding discussed above. Punishment due to error is a tenuous route to
overcoming the second-order free-rider problem. Instead of depending on agents mistakenly
enforcing cooperation as a result of their inability to differentiate the best payoff, we seek to
develop an explanation for how both imprecise and precise agents can overcome the second-
order free-rider problem. We accomplish this through the next addition to our model, which
will incentivize agents to enforce cooperation despite the costs.
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3 The Model with Foresight

3.1 Strategy Revision with Foresight

We now extend our strategy revision protocol to make use of foresight. Let (x ′
i , y

′
i ) be a

candidate strategy of i . Let Π
(1)
i be the expected payoff to i at the next collective action if

i chooses (x ′
i , y

′
i ) while all its group-mates keep their current strategies. Individual i may

expect that its group-mate j will chose a new strategy (x̃ j , ỹ j ) in response to i using (x ′
i , y

′
i ).

Predicting these strategies for all group-mates allows i to estimate the expected payoff Π
(2)
i

at the collective action two steps forward. In the standard myopic optimization (or the “best
response” approach) which we have used so far, i attempts to maximizeΠ

(1)
i . In contrast, we

will now postulatemyopic optimizationwith one-step foresight where i attempts tomaximize
the utility function

Π f = (1 − ω)Π
(1)
i + ωΠ

(2)
i , (9)

where the foresight parameter 0 ≤ ω ≤ 1 measures the weight of the future payoff in the
utility function. We note that predicting how group-mates will react to a change in one’s
strategy should not be too difficult cognitively. Basically, one just has to answer the simple
question “what would I do if I were in their place?” In numerical implementation, i generates
K + 1 pairs of candidate strategies for each j and attempts to picks the best one from the
j’s perspective. The actual choice happens with probabilities proportional to exp(λΠ f ) as
before.

Note that in our implementation, individuals only seek to predict their potential influence
over members of their own group. In particular, agents that participate in “us vs them” events
do not attempt to predict how the opposing group’s agents will alter their future behavior. This
is a reasonable assumption because of the lack of familiarity between members of different
groups, and the fact that the two groups are not guaranteed to interact again.

3.2 Results for the Model with Foresight

We begin our investigation of the full model by first considering the effects of the foresight
parameter ω and the game frequency ratio E on individual and group behavior. Figure 4
illustrates these effects for groups with perfect precision (λ = ∞, first row) and imperfect
precision (λ = 40, second row). In addition to the efforts and relative payoffs, we now show
the payoff loss due to being punished (labeled “punishment incurred” q in the graphs) and
the payoff lost by other individuals due to the punishment by the focal individual (labeled
“punishment inflicted” p in the graphs). Formally, for individual i , the punishment incurred
qi = ∑

j κki while the punishment inflicted pi = ∑
j κik . (See the SI for figures summarizing

punishment thresholds yi and the costs of punishing others δi j .)
The case ofω = 0 corresponds to cooperation and punishment in groups without foresight

as discussed above. In this case, most of the group effort is delivered by the most dominant
individual and punishment happens only by error. We see foresight significantly increases
the total group effort and that this happens in spite of the most dominant individuals greatly
decreasing their efforts (Fig. 4a, e). Rather than contributing to production of the collec-
tive goods, the dominant individuals dramatically increase punishment delivering most of it
(Fig. 4c, g). Punishment is mostly directed towards weak individuals (Fig. 4d, h) who greatly
increase their contributions (Fig. 4a, e). As a result of these factors, dominant individuals
increase their payoffs at the expense of subordinates (Fig. 4b, f). Our results thus suggest
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Fig. 4 Effects of the foresight parameter ω and the game frequencies ratio E on the group efforts X and
relative payoffs π , the punishment inflicted p, and the punishment incurred q for individuals of different ranks
in the full model with perfect (λ = ∞, first row) and imperfect (λ = 40, second row) precision. For each value
of ω, the bars (from left to right) correspond to E = 1 : 0, 1 : 1, 0 : 1. The segments of each bar correspond
to a particular individual with the dominant at the bottom (purple) and the weakest at the top. Results are the
averages of 20 simulations using: N = 8, b = 1.0, c = 0.5, β = 1, K = 2 and E3 = 0.10 (Color figure
online)

that foresight does indeed provide a viable route to overcoming the second-order free-rider
problem.

In general, dominant individualsmake lower contributions and obtain larger proportions of
the reward than their group-mates, but these asymmetries are lessened as group size increases
(see the SI). In all cases, foresight greatly increases the efforts of subordinate group members
(Fig. 4a, e) because of increased punishment of free-riders. Foresight results in dominant
members severely decreasing their contributions toward production because punishing is
cheaper to these individuals, and hence it is easier to increase their group’s total output by
promoting cooperation of others than it is to do so by increasing their own contributions.
This results in a division of labor, where the dominant individual focuses on promoting
cooperation through punishment while the rest of the group contributes to the common good.
In this way the dominant individual acts as a coercive leader for the group.

As in the basic model, we see that increased competition with other groups (i.e. increased
E) results in a higher group efforts. However, because of the aforementioned reasons, these
increases are not due to the dominant individual contributing more, but instead a result of
cooperation being more strictly enforced (Fig. 4a, c, e, g). Hence, the extent of a group’s
division of labor is driven by both the emphasis its members place on future payoffs and the
amount of competition they face from other groups. These results imply that the emergence of
a coercive leader would be more likely in rational groups that commonly engage in conflicts
with neighboring groups.

Another factor that determines the extent of the division of labor is the number of candidate
strategies generated, K . Figure 5 shows that for the case of N = 8 as the number of candidate
strategies an individual considers grows, dominant individuals contribute less and punish
more (see the SI for additional numerical results). The fact that the extent of the observed
division of labor increases with the number K of candidate strategies considered implies that
the option to develop such a division is payoff-maximizing.
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Fig. 5 Effects of the foresight parameter ω and the number of candidate strategies K on the group efforts X
and relative payoffs π , the punishment inflicted p, and the punishment incurred q for individuals of different
ranks in the full model with perfect (λ = ∞, first row) and imperfect (λ = 40, second row) precision. For
each value of ω, the bars (from left to right) correspond to K = 1, 2, 4. The segments of each bar correspond
to a particular individual with the dominant at the bottom (purple) and the weakest at the top. Results are the
averages of 20 simulations using: N = 8, b = 1.0, c = 0.5, E = 1 : 1, and E3 = 0.1 (Color figure online)
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Fig. 6 Further results on punishment with foresight. First row of graphs: effects of the game frequencies ratio
E and the frequency E3 of cultural group selection events. For each value of E, the bars (from left to right)
correspond to E3 = 0.00, 0.05, 0.10, 0.15, 0.20. Second row of graphs: effects of the group size N and the
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Figure 6 provides additional information on the effects of different parameters with ω =
0.5 and λ = 40. The first row of graphs in this figure explores the effects on the game
frequencies ratio E and the frequency of cultural group selection events E3. Increasing
E increases both contributions and punishment. Effects of E3 are somewhat similar but
relatively small. We see that weaker individuals increase their contributions towards the
group’s good because dominant individuals punish more with increasing E3. The second
row of graphs in Fig. 6 illustrates the effects of the group size N . We see that increasing N
increases the amount of payoff spent on punishment and also decreases the payoff of dominant
individuals. Our results correspond to the well-established fact that group cohesion is more
difficult to maintain as group sizes increase. The third row of graphs in Fig. 6 explores the
effects on the benefit b and the hierarchy steepness β. Increasing either of these parameters
increases punishment and contributions as expected.

Figures S8–S10 in the SI provide additional numerical results. Among other things they
show that although foresight increases productionof collective goods, its effect on the absolute
payoffs Π can be negative (due to the costs of punishment).

4 Discussion

Here we have studied the impact of punishment on the ability of heterogeneous groups to
overcome collective action problems. The latter seriously undermine cooperation across a
wide range of situations in many animal and human groups as demonstrated by numerous
studies in primatology [15,52,68,69,96,97], behavioral biology [4,56,57,74], anthropology
[10,11,38,40,58,59], and economics [71,73,90]. Earlier work has shown that within-group
heterogeneity and inequality can, under some conditions, increase the group’s productivity
as dominant or stronger individuals make larger effort overcompensating free-riding of sub-
ordinate or weak group-mates [27,29]. Earlier work has also established that punishment is
a powerful force for the maintenance of cooperation [7,8,24,66,84]. However the role of
punishment in the origin of cooperation is less clear, partially because of the second-order
free-rider problem [6,44].

Earlier models were studied under the assumptions that individuals are genetically hard-
wired to behave in a particular way or that they use selective imitation ormyopic optimization
to modifying their strategy [82]. The first approach is hardly realistic (at least in the case of
humans), while the last two run into the second order free-rider problem. Selective imitation
would also be difficult to use if groups are heterogeneous as a strategy successful for some-
body would not necessarily be good for everybody else. These challenges forced us to look
for alternative approaches.

Our novel solution focuses on a one-step foresight where players, first, care about their
future payoff and, second, attempt to account for how their group-mates will react to their
new strategies. These are very intuitive assumptions. Our main result is that inclusion of a
limited foresight dramatically changes groups’ social dynamics. First, it greatly simplifies
cooperation by making punishment an utility increasing action. This is a robust result, which
is not expected to crucially depend on modeling details such as the presence of heterogeneity
in strengths or the specific form of punishment used. Second, foresight can result in a division
of labor in which more dominant or stronger individuals specialize in enforcing cooperation
through punishment while the rest of the group focuses on production of collective goods.
Lastly, this route to promoting cooperation works for a wide range of the number of candidate
strategies K and precision λ. The potency of this new method of strategy revision was made
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clear by the examining the effect of the parameterω, whichmeasures the emphasis individuals
place on forecasted payoffs. We saw that as the importance of future payoffs increased,
individuals became more willing to punish uncooperative group-mates and the extent of
the division of labor deepened. While previous agent-based simulations have shown that
possessing theory of mind is beneficial when participating in dyadic games [18,19], our
work serves as one of the first steps towards understanding how it affects behavior in a group
setting. Our findings suggest that a theory of mind is an important aspect of how groups are
able to solve collective action problems.

In our paper, we started by accepting the existence of foresight as given and then explored
its evolutionary consequences. An interesting and important question is how it evolved in the
first place. In principle, foresight could have evolved for a variety of reasons, e.g. because it
increased individual performance in hunting, building shelters, making fire, mating, increas-
ing dominance status, or in coalition building. Exploring these possibilities is outside of the
scope of our paper.

Earlier work has already emphasized the importance of strategy revision protocols in
evolutionary dynamics [82]. While the first and second-order free-rider problems exist inde-
pendently of the strategy revision protocol, people’s decision-making process can affect the
ability of groups to overcome these problems. For example, selective imitation is not able to
solve the first or second-order free-rider problems without invoking additional mechanisms
(e.g., group selection or reduced migration and inbreeding). In contrast, foresight is able to
overcoming the second-order free-rider problem as punishment gets established and hence
cooperation increases.

Our approach formaking predictions of howgroup-mateswill act is related to the so-called
“level-k models” [64,89]. The latter assume players adhere to a particular model of reasoning
which forms a hierarchy. At the bottom are those individuals who change their behavior
completely randomly, referred to as level-0 types. If a player assumes all others adhere to
level-0 reasoning and adapt his or her behavior accordingly, then they are categorized as
level-1 type. Similarly, a level-2 type believes all others to be either level-0 or level-1. These
levels of reasoning continue indefinitely. In ourmodel, level-0 individuals do not change their
strategies and level-1 types use standardmyopic optimization. Our limited foresight updating
then corresponds to level-2 reasoning types as they consider how others will react to their
actions. This assumption is both quite natural and not too taxing on the players’ cognitive
abilities.

Here, our groups were faced with both “us vs nature” events in which a single group
was faced with the task of producing a collective good, and “us vs them” events which
saw two groups competing over goods. We saw that the type of collective action a group was
participating in greatly affected the strategies groupmembers chose. In particular, we saw that
both production and punishment rose in response to the frequency of “us vs them” events
as observed earlier [27,28]. Cooperation and punishment also increased with increasing
the intensity of cultural group selection (measured in our model by parameter E3) but the
overall effect was small. Our models show that groups of rational self-interested individuals
capable of limited foresight can converge on cooperative solutions evenwithout cultural group
selection (cf. [85]). Such a convergence will also happenmuch faster than if by cultural group
selection as it does not require information exchange between groups.

The division of labor observed in our simulations is a result of the heterogeneity of our
groups. Individuals in our model were assumed to differ in strengths, which impacted their
shares of the reward, ability to punish others, and resiliency against punishments. These
differences resulted in dominant or stronger individuals being able to more easily exert
influence over their peers through punishment. The inability to efficiently retaliate against
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the punishment inflicted by the strong left the weaker group members with no choice but to
increase their production efforts. [Otherwise, retaliation can easily destroy cooperation [67].]
Hence, through the use of the threat of punishment, dominant individuals were able to enforce
cooperation within their groups. Since the dominant individuals did not fear being punished
andmaintained cooperation largely through the threat of punishment alone,we saw themhave
disproportionately large payoffs. While the models without punishment predict “exploitation
of the great by the small” [27,29,71], those with punishment depict “the exploitation of the
small by the great”.

Of particular interest are the trends noted in the payoffs of individuals. We saw that fore-
sight coupled with heterogeneity resulted in dominant individuals reaping larger shares of
rewards. The benefit to the strong provided by an ability of foresight was shown to be under-
mined by larger group sizes. Dominant individuals’ share of the payoffs also increased when
“us vs them” events became more common, the number of candidate strategies increased, or
agents became more precise in their strategy selection. Also as one would expect, dominant
individuals obtained larger portions of the groups’ benefits when hierarchies were steeper.

The group sizes used in our simulations (N = 4, 8, and 16) cover the range of the
number of adult males observed in chimpanzees and extant hunter-gatherer groups [45,75].
Our model applies to situations where adult males pay the costs of contributing to collective
actions but then share the benefits they have secured with their own females and offspring.
[For males the share of benefits to go to their women and children are a part of their utility.]
The emergence of a division of labor was highly sensitive to group size. Increases in group
size resulted in growing costs of punishment and in individuals being less prone to punish
group-mates. This in turn resulted in decreases in group efforts and in payoffs being more
evenly distributed (since it was no longer cost effective for dominant individuals to specialize
in enforcing cooperation). Large group sizes make cooperation more difficult also in many
related models [27,29,30].

Two additional parameters of ourmodels the expected benefitb and the hierarchy steepness
β.As onewould expect, increases inb resulted in increased efforts andpunishment thresholds.
While in the basic model without foresight increasing β resulted in the efforts of domi-
nant individuals rising while their relative payoffs decreased, in the full model we observed
increases in both the dominant individuals’ thresholds and relative payoffs. Hence, the pres-
ence of foresight effectively removed the “altruistic bully” effect observed by Gavrilets and
Fortunato [29]. Here, we observed that increasing within-group inequality increased group’s
production. In general, however, this is expected to depend on modeling details [27].

Themodels we have developed havemore direct implications towards the theory of leader-
ship [31,37,47,51,87]. In particular, one of the roles leaders often take is the role of punisher
of defectors in collective actions [47,70]. Experimental evidence has shown that inter-group
conflicts increases the punishment of defectors [81] and that when individuals are heteroge-
neous in the cost of administering punishment, the punishment is carried out by those with
the lowest cost [21,78]. Our models show that these behaviors naturally emerge if there is
within-group heterogeneity and foresight. Impromptu leaders are more likely to emerge in
groups that experience conflict with neighbors frequently. These results are supported by
earlier experimental findings [81].

There are several important directions the currentmodelmay be extended. First, additional
heterogeneity between individuals could be introduced into the precision of individuals and
the number of candidate strategies they can generate. A possible route would be to associate
the precision of an individual to their strength or payoffs. This extension would mean that
individuals who previously obtained greater amounts of a good have the luxury to more fully
consider the consequences of their actions. Second, here we assumed that all individuals
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updated their strategies using the same protocol. This could be contrasted with the case
where individuals use different strategy revision protocols. For example, selective copying
could result in groups where the extent to which individuals enforce cooperation is more
equal. Third, the weight of the level-2 expected payoffs, ω, could be taken to be a dynamic
trait. This means that as rounds progress individuals could alter the emphasis they place on
future payoffs. Fourth, we studied only one-step foresight generalizing myopic optimization.
However, individuals may be using higher-order theories of mind and care about longer
term payoffs [18,19,49,50]. Models capturing these features would be much more complex,
but potentially more realistic. Finally, we assumed that individuals attempt to maximize
their material payoff and neglected any effects of past history. In reality, individuals are
often motivated by social norms and normative values [30] and their current actions may be
dependent on what happened to them or their groups in the past [94]. All these are important
factors that need to be considered in future work.

As societies continue to develop, the importance of cooperation steadily grows. However,
the intricacies of human motivations leave collective actions a deep and complex area of
research. In particular, balancing immediate versus delayed gratifications—undertaken by
all people daily—can be especially nuanced. By incorporating foresight into our model, we
have taken steps towards better understanding how our desires for the future shape the society
in which we live. The approach presented here is built upon concepts fundamental to group
living, and hence will serve as an integral part of completing our understanding of collective
action problems.
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Supporting Information for Perry et al. “Collective action problem in heterogeneous popula-

tions with punishment and foresight”

Additional details of numerical simulations

Parameters. In addition to the parameters specified in the text, all simulations were run using 100 groups, a half-success effort
of X0 = 1, a cost parameter of c = 0.5, and the scaling parameters e = 1.0, φ = 5.0, S0 = 1. All simulations were run for
30,000 time steps, meaning on average each group underwent 300(1 + E2) events (this is because “us vs them” events include
two groups while us vs. nature and cultural group selection events included only one group affected). Individuals updated
their strategies with probability µ = 0.5, which means on average each individual updated their strategies 150(1 + E2) times.
Candidate strategies were generated by perturbing an individual’s current strategy by Gaussian noise with a standard deviation
of σ = 0.5. The standard deviation of the error ξ in evaluating strengths was ε = 0.10. We performed 20 independent runs for
each parameter combination.

Initial conditions. At the start of a run, individuals’ initial efforts were drawn from a uniform distribution over the interval
[0, 0.05]. When applicable, initial punishment thresholds were assigned in the same way. Individuals were also assigned non-
evolvable strengths si at the beginning of each run (via a uniform distribution over the interval [0, 1]) and then sorted according
to their strengths.

Bounds. Individual’s efforts x were restricted to be both nonnegative and below the quantity 1+B̃vi

c
(to ensure there are no

negative payoffs). Punishment thresholds y were taken to be nonnegative, but had no upper bound in place. In the event that
a candidate strategy was a negative number, we took that candidate strategy to be 0. We did not disallow repeated candidate
strategies. All payoffs were artificially bounded below by 10−5.

Summary statistics and graphics. During simulations the data were saved every 10th time steps. Our graphs report the
average values obtained after discarding the first 10,000 time steps. That the reported values correspond to stochastic equilibria
was established by visual inspection of trajectories. Note that all runs were done for a minimum of 30,000 time steps, which
translates into individuals updating their strategies 150 times on average. For each run the averages of all individuals of
equivalent rank are taken across all groups. For the case of hierarchal groups, stacked histograms were used to relate the
measurement corresponding to each individuals while simultaneously showing the group total. In the stacked histograms, the
lowest segment corresponds to the dominant individual (with the largest strength s) while the upper-most corresponds to the
weakest group-member. All figures were generated using the Gnuplot software or Matlab.

Comments. Individuals were allowed to update their punishment thresholds only if they estimated they were stronger than
at least one other individual in their group (that is, if si > sj + η for at least one other individual j). Moreover, if the cost
of punishing exceeds an individual’s expected payoff, then they simply punish as much as their expected payoff allows. Our
results occasionally show the development of large thresholds by weaker individuals. These however do not translate into higher
actual punishment by such individuals as they they punish very rarely and only similarly week individuals. The development of
this “false bravado” in weaker individuals becomes less common as precision λ increases. Additionally, it is absent in stronger
individuals since they actively implement punishment.

The model was implemented in C; some of its components were also independently implemented in Matlab (with similar
results). Simulations were run on a cluster.

Additional figures

Basic egalitarian model . Figure S1 investigates the effects of benefit b, the precision parameter λ, and the games frequencies
ratio E on the group effort in the egalitarian model. Note that if the groups are only engaged in “us vs. nature” games (i.e., if
E = 1 : 0) and precision in payoff evaluation is perfect (λ = ∞), groups are predicted to contribute only if b > cX0 (Gavrilets
2015a,b). For parameter values used in Figure S1, this implies b > 0.5. This is indeed what is observed in simulations (see the
leftmost graph).

Figures S2 and S3 use longer runs (100,000 times steps) to illustrates the effects of parameter K. It shows that with large
K and with groups engaged in “us. vs. them” games, the system does not settle to an equilibrium but exhibits non-equilibrium
dynamics even when precision in payoff evaluation is perfect (λ = ∞).

Basic hierarchy model . Figures S4, S5, and S6 provide additional information on the effects of various parameters on the
individual and group efforts and on the relative payoffs of individuals of different ranks. In these figures, we explore a wider
range of parameters than in the main part. Specifically, we use five different values of the precision parameter (λ = ∞, 80, 40, 20,
and 10) in Fig. S4, five different values of the number of candidate strategies (K = 1, 2, 4, 8, and 16) in Fig. S5, and five different
values of the frequency of cultural group selection events (E3 = 0.00, 0.05, 0.10, 0.15, and 0.20) in Fig. S6.

Egalitarian model with foresight and punishment in “us vs. nature” games. Figure S7 shows the effect of foresight in the
most basic case of our model. Namely, we assume that groups are egalitarian and only participating in “us vs nature” games.
This is done to highlight the presence of the threshold effect established in prior works (Gavrilets 2015a,b), and illustrate
how foresight overcomes the second-order free rider-effect. For the parameter values used, individuals without foresight should
not contribute when b ≤ 1. The leftmost graph in Fig. S7 shows that when foresight is absent (ω = 0) then individuals only
contribute for the cases of b = 1.25, 1.50, 1.75, and 2.00. When foresight is present (ω = 0.50), however, we see contributions in
the cases of b = 0.75, and 1.00 as well. The reason for this is that foresight successfully solves the second-order free-rider effect
as illustrated by the emergence of positive threshold values (centermost graph). It is important to note, that while foresight
does promote cooperation, it does not necessarily increase the groups payoffs (rightmost graph). This is because of punishment
costs.

Hierarchy model with foresight and punishment. In contrast to the figures in the main text, here we also show the punish-
ment thresholds, the loss of payoffs due to punishing others and the total payoffs. Figure S8 shows the interactions of foresight
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ω, group size N , and the game frequencies ratio E for λ = 40. Figure S9 shows the interactions of foresight ω, group size N ,
and precision λ for E = 1 : 1. Figure S10 shows the interactions of benefit b, group size N , and the hierarchy steepness β for
ω = 0.5, λ = 40, and E = 1 : 1.
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and 16. Results are the averages of 20 simulations using: N = 8, b = 1.0, c = 0.5, X0 = 1.0, and E3 = 0.0.
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Fig. S3: Time series summarizing the effects of the games frequencies ratio E (varies by row), and the number of candidate
strategies K (varies by column) on group efforts X in the basic egalitarian model with perfect precision, i.e. λ = ∞. The x-axis
uses units of 100,000 timesteps. Results are the averages of 20 simulations using: N = 8, b = 1.0, c = 0.5, X0 = 1.0, and E3 = 0.0.
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Fig. S4: Effects of the game frequencies ratio E, the number of candidate strategies K, and the precision parameter λ on the
group effort X and the relative payoffs π of individuals of different ranks in the basic hierarchical model. The 1st and 2nd rows
correspond to N = 4, the 3rd and 4th rows to N = 8, and the 5th and 6th to N = 16. For each value of E, the bars (from left
to right) correspond to λ = ∞, 80, 40, 20, 10. The segments of each bar correspond to a particular individual with the dominant
at the bottom (purple) and the weakest at the top. Results are the averages of 20 simulations using: b = 1.0, c = 0.5, β = 1.0,
and E3 = 0.1.
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Fig. S5: Effect of the game frequencies ratio E, the precision parameter λ, and the number of candidate strategies K on the
group effort X and the relative payoffs π of individuals of different ranks in the basic hierarchical model. The 1st and 2nd rows
correspond to N = 4, the 3rd and 4th rows to N = 8, and the 5th and 6th to N = 16. For each value of E, the bars (from left to
right) correspond to K = 1, 2, 4, 8, 16. The segments of each bar correspond to a particular individual with the dominant at the
bottom (purple) and the weakest at the top. Results are the averages of 20 simulations using: N = 8, b = 1.0, c = 0.50, β = 1.0,
and E3 = 0.10.
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Fig. S6: Effect of the game frequencies ratio E, the precision parameter λ, and the frequency of cultural group selection events
E3 on the group effort X and the relative payoffs π of individuals of different ranks in the basic hierarchical model. The 1st
and 2nd rows correspond to N = 4, the 3rd and 4th rows to N = 8, and the 5th and 6th to N = 16. For each value of E,

the bars (from left to right) correspond to E3 = 0.00, 0.05, 0.10, 0.15, 0.20. The segments of each bar correspond to a particular
individual with the dominant at the bottom (purple) and the weakest at the top. Results are the averages of 20 simulations
using: b = 1.0, c = 0.50, β = 1.0, and K = 2.
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Fig. S7: Results summarizing the effects of the emphasis on future payoffs ω, and the average benefit b for the case of egalitarian
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Fig. S8: Effects of the foresight parameter ω, the group size N , and the game frequencies ratio E in the full model for precision
λ = 40. The first column contains results for N = 4, the second for N = 8, and the third for N = 16. The rows from top
to bottom summarize the effort levels X, the total payoffs Π, the relative payoffs π, the thresholds y, the cost of punishing
δ, the punishment inflicted p, and the punishment incurred q. For each value of ω, the bars (from left to right) correspond to
E = 1 : 0, 1 : 1, 0 : 1. The segments of each bar correspond to a particular individual with the dominant at the bottom (purple)
and the weakest at the top. Results are the averages of 20 simulations using: b = 1.0, c = 0.5, β = 1, K = 2, and E3 = 0.1.
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Fig. S9: Effects of the foresight parameter ω, the group size N , and the precision λ in the full model. The first column contains
results for N = 4, the second for N = 8, and the third for N = 16. The rows from top to bottom summarize the effort levels
X, the total payoffs Π, the relative payoffs π, the thresholds y, the cost of punishing δ, the punishment inflicted p, and the
punishment incurred q. For each value of ω, the bars (from left to right) correspond to λ = ∞, 40, 10. The segments of each bar
correspond to a particular individual with the dominant at the bottom (purple) and the weakest at the top. Results are the
averages of 20 simulations using: b = 1.0, c = 0.5, β = 1, K = 2, E = 1 : 1, and E3 = 0.1.
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Fig. S10: Effects of the expected benefit b, the group size N , and hierarchy steepness β in the full model. The first column
contains results for N = 4, the second for N = 8, and the third for N = 16. The rows from top to bottom summarize the effort
levels X, the total payoffs Π, the relative payoffs π, the thresholds y, the cost of punishing δ, the punishment inflicted p, and
the punishment incurred q. For each value of b, the bars (from left to right) correspond to β = 1, 2, 4. The segments of each bar
correspond to a particular individual with the dominant at the bottom (purple) and the weakest at the top. Results are the
averages of 20 simulations using: c = 0.5, K = 2, λ = 40, E = 1 : 1, E3 = 0.1 and ω = 0.50.
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