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A B S T R A C T

Human behavior and collective actions are strongly affected by social institutions. A question of great theoretical
and practical importance is how successful social institutions get established and spread across groups and
societies. Here, using institutionalized punishment in small-scale societies as an example, we contrast two
prominent mechanisms - selective imitation and self-interested design - with respect to their ability to converge
to cooperative social institutions. While selective imitation has received a great deal of attention in studies of
social and cultural evolution, the theoretical toolbox for studying self-interested design is limited. Recently
Perry, Shrestha, Vose, and Gavrilets (2018) expanded this toolbox by introducing a novel approach, which they
called foresight, generalizing standard myopic best response for the case of individuals with a bounded ability to
anticipate actions of their group-mates and care about future payoffs. Here we apply this approach to two
general types of collective action – “us vs. nature” and “us vs. them” games. We consider groups composed by a
number of regular members producing collective good and a leader monitoring and punishing free-riders. Our
results show that foresight increases leaders' willingness to punish free-riders. This, in turn, leads to increased
production and the emergence of an effective institution for collective action. We also observed that largely
similar outcomes can be achieved by selective imitation, as argued earlier. Selective imitation by leaders (i.e.
cultural group selection) outperforms self-interested design if leaders strongly discount the future. Foresight and
selective imitation can interact synergistically leading to a faster convergence to an equilibrium. Our approach is
applicable to many other types of social institutions and collective action.

1. Introduction

Cooperating human groups can acquire material benefits that would
be completely out of reach (or too costly) for single individuals. For this
to happen, however, group members have to be able to effectively co-
ordinate their actions, resolve potential conflicts, and eliminate or
minimize free-riding. The collective action problem (i.e., free-riding of
group members) is generic for both human and non-human animal
groups and can easily undermine within-group cooperation (Hardin,
1982; Olson, 1965; Pecorino, 2015; Sandler, 1992). Collective action
problems can be (partially) resolved by several mechanisms including
kin cooperating with each other (and gaining compensatory benefits
through indirect fitness), direct and indirect reciprocity, punishment,
group selection, selective incentives, within-group heterogeneity as
well as social norms and social institutions regulating individual and
group behavior (Gavrilets, 2015b; Hardin, 1968, 1982; McElreath &

Boyd, 2007; North, 1990; Nowak, 2006; Olson, 1965; Ostrom, 2000;
Pecorino, 2015; Sandler, 1992).

A question of crucial theoretical and practical importance is how
social institutions for collective action become effective and stable.
Institutions that regulate social life, including those that reconcile dis-
putes, manage the commons, and ensure norm compliance are ubiqui-
tous and a key feature enabling the success of our species (Alesina &
Giuliano, 2015; Miller, 2019; North, 1990; Powers, van Schaik, &
Lehmann, 2016; Richerson & Boyd, 2005; Singh, Wrangham, &
Glowacki, 2017). Yet, we know little about how these institutions de-
velop. To what extent do they reflect the interests and intentionality of
their members? Do the design features reflect just transmission pro-
cesses such as selective imitation or are they better explained by in-
dividual wielding agency over their shape through expectations about
the future and the behavior of others?

One powerful method of optimizing individual strategies is random
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innovation coupled with selective imitation by payoff-biased social
learning. Under this method, individuals observe and evaluate actions
and payoffs of others and adapt strategies resulting in a higher payoff.
This mirrors how one typically thinks of biological evolution: a blind
process of mutation introduces variation and then natural selection
favors mutants with higher fitness. Selective imitation is mathemati-
cally analogous to natural selection acting in biological systems but it
can operate on much faster time-scales (Richerson et al., 2016). Se-
lective imitation can also drive cultural group selection, resulting in the
spread of beneficial institutions across different groups (Richerson
et al., 2016; Richerson & Boyd, 2005; Turchin, 2016). Some researchers
view cultural group selection as the most important (or even the only)
mechanism that can account for institutionalized cooperation in human
societies (Chudek, Zhao, & Henrich, 2013; Richerson et al., 2016;
Turchin, 2016). However, both humans and non-human animals exhibit
bounded rationality (de Waal, 2016; Gigerenzer & Selten, 2001).
Moreover the power and usefulness of selective imitation within the
context of collective action can be questioned. At the individual level,
because free-riders often end up with a higher payoff than cooperators,
their strategies are more likely to be copied which would undermine
cooperation (Burton-Chellew, El Mouden, & West, 2017; Molleman, van
den Berg, & Weissing, 2014; van den Berg, Molleman, & Weissing,
2015). Moreover, because individuals differ in a variety of character-
istics, a strategy that is advantageous for one will not necessarily be
beneficial or even feasible for another. At the group level, selective
imitation of institutions requires a flow of information between (po-
tentially competing) groups and the intimate knowledge of relevant
details. Even if these are readily available, institutions might not be
transferable “off the shelf” because of differences among groups in their
social or ecological environment (Aoki, 2001; Powers et al., 2016;
Singh et al., 2017). Additionally, models of selective imitation typically
fail to more broadly consider how within-group variation in interests
and power constrains the form of emerging institutions (Cofnas, 2018;
Singh et al., 2017; Smith, 2020) and pay only cursory attention to how
new rules emerge treating innovation as pretty much a random process.

An alternative view emphasizes the power of within-group design
processes driven by the motivation of the whole group or some of its
segments to increase their material payoffs or some more general uti-
lity. For example, Ostrom (1990) has identified a number of “design
principles” for stable and successful management of common resources
by local communities. Early eighteenth-century pirates designed de-
mocratic institutions (with constitutions, separation of power, and
checks and balances) making pirate predatory groups very efficient
(Defoe, 1724; Leeson, 2009). Similar examples are known among con-
temporary prison gangs (Skarbek, 2012). Singh et al. (2017) argue for
the importance of self-interested design in the creation of institutions
and put forward a “self-interested enforcement” hypothesis, which
proposes that many observed group-level traits and institutions reflect
the differences in relative enforcement capabilities of different group
segments. We note that the idea of self-interested design also captures
key aspects of human sociality – that we can in fact take guesses about
the future and the future behavior of our peers.

One way to contrast selective imitation and self-interested design as
the mechanisms of social evolution is through mathematical modeling.
Inspired by the work of Cavalli-Sforza and Feldman (1981) and Boyd
and Richerson (1985) (see also earlier work by Rashevsky, 1949, 1951,
1965a, 1965b, Landahl, 1950, Truco, 1954), there is now a great di-
versity of mathematical models and theoretical approaches dealing
with social learning and imitation. In contrast, there is no established
mathematical framework for modeling the evolution of group-level
traits and institutions by self-interested design. A powerful and well
studied method of optimizing individual behavior is myopic best re-
sponse (Sandholm, 2010), which is an example of the bounded ra-
tionality approach (Gigerenzer & Selten, 2001). Under this method,
individuals attempt to optimize their behavior under the assumption
that everybody else keeps their strategies. If each group member is

using myopic optimization, the group can end up at a Nash equilibrium
(Hofbauer & Sandholm, 2002; Xu, 2016). However, myopic best re-
sponse can fail in social dilemmas or when there is a collective action
problem, because self-interested individuals will be motivated to free-
ride on the effort of others.

Recently Perry et al. (2018), Perry and Gavrilets (2020), Gavrilets
(2020) introduced a novel strategy updating method which generalizes
myopic best response for individuals with a bounded ability to i) an-
ticipate future actions of their group-mates and ii) consider their effects
on future payoffs. The method, which we called (one-step) foresight,
attempts to capture some aspects of human decision-making which are
well established empirically. One such aspect is the “theory of mind”,
i.e. the ability to reason about the knowledge and thought processes of
others in the social context (Premack & Wodruff, 1979). The “theory of
mind” exists in humans (Tomasello, Carpenter, Call, Behne, & Moll,
2005) and also appears to exist in great apes (de Waal, 2016; Krupenye,
Kano, Hirata, Call, & Tomasello, 2016). Foresight with respect to the
effects of punishment is also well established in experimental studies of
cooperation as a very powerful driver of individual behavior: the threat
of punishment immediately makes subjects more cooperative (Fehr &
Gächter, 2002; Spitzer, Fischbacher, Herrnberger, Grön, & Fehr, 2007)
and subjects expect that individuals who were punished earlier will be
more cooperative in the future (Krasnow, Cosmides, Pedersen, & Tooby,
2012; see also Axelrod, 1986's discussion of “deterrence” as a me-
chanism for maintaining cooperative norms). More generally, foresight
is related to our ability to represent mentally what might happen in the
future (captured in the notion of prospection, Szpunar, Spreng, &
Schactera, 2014). Humans are routinely engaged in making inter-
temporal choices when they have to trade off costs and benefits at
different points in time (Berns, Laibson, & Loewenstein, 2007;
Frederick, Loewenstein, & O'Donoghue, 2002). Intertemporal choices
imply a degree of self-control (Hayden, 2019), which is also found in
other animals (MacNulty, Tallian, Stahler, & Smith, 2014; Miller,
2019). Consideration of future interactions and their impact on in-
dividual payoffs are important in many game-theoretic models (e.g.,
Axelrod, 1984; Jehiel, 1995, 2001; O'Donoghue & Rabin, 1999, 2001;
Sandholm, 2010). Similarly there exist theoretical approaches aiming to
capture humans' ability to predict behavior of others, such as “beauty
contests” games (Duffy & Nagel, 1997) and level-k and cognitive hier-
archy models (Nagel, 1995a; Stahl & Wilson, 1995b). Foresight is a
simple way to bring these two aspects together in application to co-
operation and punishment.

Foresight was initially introduced within the context of collective
action in heterogeneous groups in the presence of peer punishment
(Perry et al., 2018). In particular, we showed that foresight can allow
groups to overcome the first- and second-order free-riding problems
leading to successful cooperation. We also demonstrated the emergence
of a division of labor in which some individuals (e.g., more powerful)
specialized in punishment while others (e.g., less powerful) mostly
contributed to the production of collective goods. The power of fore-
sight in ensuring cooperation via peer punishment suggests that it may
also promote the evolution of social institutions.

Here our focus will be on one particularly important example of
early social institutions which is leadership (Dogan, Glowacki, & Rusch,
2018; Gächter & Renner, 2018; Garfield, Hubbard, & Hagen, 2019;
Glowacki & von Rueden, 2015; Hooper, Kaplan, & Boone, 2010; Smith
et al., 2016; Wiessner, 2019). Leaders can coordinate the actions of
group members making their efforts more efficient, monitor and punish
free-riders, reward contributors, and foster pro-social norms and values.
Leaders and followers emerge naturally as a result of heterogeneity in
preferences, motivation, personality, physical characteristics, informa-
tion available, and other features affecting individual performance in
different activities (Gavrilets, Auerbach, & van Vugt, 2016; Perry et al.,
2018; Smith et al., 2016). In some small-scale societies, leaders get an
equal share of the collective goods produced by the group while in
others they get extra benefits (Garfield et al., 2019; Glowacki & von
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Rueden, 2015; Smith et al., 2016). Leadership can be informal or in-
stitutionalized, e.g., when there are rules or shared expectations es-
tablishing who is a leader, what they do, and what their privileges are.

Withing the context of collective action, the evolution of leadership
in small-scale societies was modeled by Hooper et al. (2010) and
Powers and Lehmann (2013, 2014). Isakov and Rand (2012) and
Roithmayr, Isakov, and Rand (2015) studied theoretically in-
stitutionalized punishment in large-scale societies. Perry and Gavrilets
(2020) modeled interactions between a subordinate producing a col-
lective good and a leader tasked with monitoring and punishing the
subordinate.

Here we build on these earlier approaches to study collective actions
under institutionalized punishment in small-scale societies. Specifically,
we will assume that the division of labor between leaders who identify
and punish cheaters and the rest of the group who produce collective
goods is already established and collectively endorsed (Garfield et al.,
2019, Wiessner, 2019) and will study its evolution. Following our
earlier work (Gavrilets, 2015a, 2015b; Gavrilets & Richerson, 2017;
Perry et al., 2018; Perry & Gavrilets, 2020), we will consider two
general types of collective action - “us vs. nature” and “us vs. them” (see
below). Our main goal is to compare selective imitation and self-in-
terested design (implemented via foresight) with respect to their ability
to identify and converge to cooperative social institutions.

2. Models and results

Consider a population comprised of a number of groups. Each group
has n regular members and an additional entity which we will call a
“leader”. (The “leader” does not have to be a single individual but can
be a group, such as elders in a small-scale society, or a formal institu-
tion.) Regular group members have an opportunity to participate in
collective actions producing shared benefits. Leaders monitor their ef-
forts, punish free-riders, and collect tax.

We will consider separately and contrast two types of mathematical
models aiming to describe two most general kinds of collective action
that early human groups were most definitely engaged in: “us vs.
nature” games and “us vs. them” games (Gavrilets, 2015a, 2015b;
Gavrilets & Fortunato, 2014), Whitehouse et al., 2017, Gavrilets &
Richerson, 2017). The former describe collective actions such as de-
fense from predators, cooperative hunting, cooperative breeding, ha-
bitat improvements, building dams or fences to drive animals, etc. The
success of a particular group in solving these problems does not depend
much on the actions of neighboring groups. As groups become more
cooperative, their payoffs usually rise (Kropotkin, 1902). In contrast,
“us vs. them” games describe direct conflicts and/or other costly
competition with other groups over territory, mating opportunities,
access to trade routes, etc. (Darwin, 1871). The success of one groups in
an “us vs. them” game against less cooperative groups means failure or
reduced success for other competing groups. For each group, becoming
more cooperative does not necessarily means higher payoff in the long
run as other groups respond in kind (Konrad, 2009; Tullock, 1980).
Such an “arms race” will stop once the costs become too high. “Us vs.
them” games are more conducive for the evolution of cooperation than
“us vs. nature” games but can result is the waste of resources (Gavrilets,
2015a, 2015b).

2.1. Basic model: groups without leaders

To get a better intuition about our general model, we first consider
groups without leaders. We assume an individual's effort in a collective
action (specified by a binary variable x = 0 or 1) is costly while any
benefit produced and retained by a group is shared equally among all of
them; this creates an incentive to free-ride (Olson, 1965). Without
leaders, the payoff of an individual making effort x in a collective action
is

= −π x bP cx( ) ,s (1)

where b and c are the benefit and cost parameters. The function P gives
the normalized value of the resource produced or secured by the group.
Let X = ∑ x be the total group effort. In “us vs. nature” games, we
define P= X/(X+ X0), where X0 is a half-success parameter (Gavrilets,
2015a, 2015b). If X = X0, the probability of group success P is equal to
one half. The larger X0, the more group effort is required to secure the
reward. [A linear public goods game is a special case of model (1) with
P = X/X0, where X0 = n.] In “us vs. them” games, we define =P X X/ ,
where X is the average group effort over all G competing groups in the
system. Note that “us vs. nature” games are a special case of the gen-
eralized Volunteer's Dilemma (Archetti, 2009; Diekmann, 1985) while
“us vs. them” games are common in the theory of between-group
contests (Konrad, 2009; Rusch & Gavrilets, 2017).

In the Supplementary Information (SI), we provide details on group
behavior in these two models (see also Gavrilets, 2015a, 2015b;
Gavrilets & Fortunato, 2014). In “us vs. nature” games, groups always
evolve to an equilibrium at which the group effort can be approximates
as

= −∗X X R( 1),0 (2)

if R ≡ b/(cX0) > 1, and is 0 otherwise. Note that R is the ratio of the
individual benefit b to the group cost cX at half-success effort X= X0. In
this model, groups cooperate only if R is sufficiently large. In “us vs.
them” games, the equilibrium value of the group effort can be ap-
proximated

=
−

∗X G
G

b
c

1 ,
(3)

so that the group effort is always positive. [Numerical simulations of
“us vs. them” games also show a possibility of non-equilibrium dy-
namics at which the average effort is close to the one predicted by Eq.
(2b); see the SI]. In both types of games, in general each group is a
mixture of contributing and free-riding individuals; groups size n has no
effect on group effort X∗, which however increases with the benefit-to-
cost ratio b/c, as expected. [Of course, X∗ cannot exceed n.]

2.2. Full model: institutionalized punishment

Next we consider the full model with leaders added to groups. The
collectively endorsed role of leaders is to identify and punish free-ri-
ders. That is, punishment in our model works via the institution of
leadership (Glowacki & von Rueden, 2015; Hooper et al., 2010; Isakov
& Rand, 2012; Roithmayr et al., 2015) rather than been administered
by peers (Boyd & Richerson, 1992; Hauert, Traulsen, Brandt, Nowak, &
Sigmund, 2007).

We assume that a leader makes a costly monitoring effort y
(0 ≤ y ≤ 1). As a result of this effort each free-rider in the group is
identified with probability y. The leader then punishes each identified
free-rider by reducing their payoff by κ at a cost δ to the leader. We
define the leader's cost of monitoring as cyny, i.e. it grows linearly with
the group size; cy is a cost of monitoring parameter. [We note that
realistically in small-scale societies the costs of monitoring and collec-
tively endorsed punishment can be low.] The leader's benefit comes
from a constant tax ρ which they collect from the group's production.
Our model of institutionalized punishment can be viewed as a multi-
player extension of the inspection game (Fudenberg & Tirole, 1992;
Perry & Gavrilets, 2020).

In this model, the expected payoff of a regular member is

= − − − −π x y X ρ bP X cx κy x( , , ) (1 ) ( ) (1 ),s (3a)

where the last term is the expected cost of being punished. The expected
payoff of the leader is

= − − −π y X ρnbP X c ny δ n X y( , ) ( ) ( ) ,l y (3b)
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where the first term is the tax collected from n regular members and the
last term is the expected cost of punishing (n − X)y identified free-
riders.

Given a fixed level of monitoring y, equilibrium values of the group
effort X can be approximated using the results on groups without lea-
ders as the presence of a leader merely decreases the benefit and cost
terms from b and c in Eq. (1) to = −b b ρ(1 )͠ and = −c c κy͠ (compare
Eqs. (10) and (3a)). That is, the presence of leaders effectively decreases
the benefit and cost terms for regular members. Therefore the latter can
be motivated to produce given a sufficiently high level of monitoring y.
In contrast, for leaders, πl always decreases with y, so they will chose a
zero effort. As a result, the only equilibrium in this model is the state
with no production and no monitoring (c.f. Perry & Gavrilets, 2020).
This effect is analogous to a well-known second-order free-rider pro-
blem in models of peer-punishment (Boyd, Gintis, Bowles, & Richerson,
2003; Boyd & Richerson, 1992).

To study the dynamics of the full model with changing efforts x and
y we use stochastic agent-based simulations. We assume time to be
discrete and focus on a sequence of collective actions occurring syn-
chronously in all groups.

2.2.1. Strategy revision
After each collective action, each individual is independently given

an opportunity to revise their efforts x and y with probability q. We
allow for random innovation (analogous to random mutation in
biology), selective imitation, and self-interested optimization at rates
E1, E2, and E3 per time step per individual, respectively
(E1 + E2 + E3 = q). We also allow for errors in decision-making (see
below). We assume that under selective imitation individuals can imi-
tate their peers: regular members can imitate other regular members in
their own or other groups; leaders can imitate other leaders. We con-
sider two self-interested optimization strategies. The first is the stan-
dard myopic best response (Hofbauer & Sandholm, 2002; Sandholm,
2010). The second self-interested optimization strategy is one-step
foresight (Gavrilets, 2020; Perry et al., 2018; Perry & Gavrilets, 2020)
which we describe next.

2.2.2. Foresight
Here for simplicity we will apply foresight only to leaders. Our

justification is that leaders have more information and more power in
using it than regular members. [Perry & Gavrilets, 2020 showed in a
simpler model that allowing for one-step foresight in regular members
does not have any effect.] The foresight mechanism includes two
components: i) consideration of future benefits and ii) the forecast of
actions of others.

With respect to the former, the idea is that a major goal of pun-
ishment is often to modify the transgressor's future behavior (Axelrod,
1986; Cushman, 2015; Ellsworth & Ross, 1983; Krasnow et al., 2012).
This suggests that expected future payoffs are usually a part of the
punisher's utility function. In our implementation of (one-step) fore-
sight for leaders, the leaders attempt to maximize their utility function
ul, which we define as a sum of the expected payoff πl(y,X) after the
current round of strategy updates and the forecasted payoffs after the
next round of strategy updating πl(y′,X′):

= − + ′ ′u ω π y X ω π y X(1 ) ( , ) ( , ),l l l (4a)

where 0 ≤ ω ≤ 1 is an exogenous constant parameter weighting the
importance of future payoffs. Research in behavioral economics shows
that people usually discount future payoffs (Frederick et al., 2002;
O'Donoghue & Rabin, 1999, 2001) which implies that ω ≤ 0.5.

The leader expects that their action y this round will affect their
subordinates' effort X′ in the next round. At the same time, their y has
no effect on the benefit ρnbP(X) to be produced by the subordinates this
round, or the cost of the inspection in the next round, [cyn + δ(n − X′]
y′ (see Eq. (3b)). Therefore the leader's utility function (4a) reduces to a
sum of the costs of inspection and punishment this round and the

benefit next round

= − − − − + ′u ω c ny δ n X y ωρnbP X(1 )( ( ) ) ( ).l y (4b)

2.2.3. Forecasting the group's effort
To evaluate utility function (4b), we need to specify the leaders'

forecast for the group effort X and X′. Our assumption is that leaders
know (from previous experience or previous leaders) how regular group
members typically behave in response to a given level of monitoring y.
To capture this assumption mathematically we have used two ap-
proaches. In the first approach, leaders predict X on the basis of the ESS
Eq. (2) appropriately adjusted for the corresponding level of mon-
itoring. [That is, to predict X and X′, we use Eq. (2) with b and c sub-
stituted for − −ρ b c κy(1 ) , ͠ and (1 − ρ)b, c − κy, respectively. Here y͠
is the previous monitoring effort of the leader.] In the second approach,
instead of using Eq. (2), we pre-compute the average total group effort
X as observed in numerical simulations for different values of para-
meters b, X0, n, λ and c = 1 in the model without leaders. We interpret
these functions as capturing the leader's knowledge of subordinates'
group behavior. We then adjust X values appropriately for the corre-
sponding level of monitoring (as described above). The numerical re-
sults observed were similar for both approaches; the results shown
below correspond to the first approach. Note that both the leaders' and
regular members' attempts to optimize their actions are subject to sto-
chasticity as described below.

Given a certain level of monitoring y, the regular group members
will attempt to optimize their behavior which will lead to a certain
group effort X∗(y). (As stated above, there can be multiple equilibria of
X.) Then, a leader capable of predicting their group behavior is ex-
pected to make a minimum effort still assuring that the current group
effort X∗ is stable. We can then expect multiple Nash equilibria differing
in the amount of production, monitoring, and payoffs (see the SI).

2.2.4. Errors
To deal with errors in decision-making, which are unavoidable in

almost all real situations, we use a Quantal Response Equilibrium-like
approach (Goeree, Holt, & Palfrey, 2016) with logit errors and a non-
negative precision parameter λ (see the SI). If λ = 0, the agents choose
a strategies with uniform probabilities. If λ → ∞, the agent always
chooses the best response and the dynamics converges to a Nash
equilibrium (Hofbauer & Sigmund, 1998; Sandholm, 2010). QRE ap-
proach generalizes classical Nash equilibria. Other ways to describe
errors are possible and have received considerable attention (e.g.,
Young, 1998). The advantage of QRE is that in this approach error
probabilities depend on error costs.

2.2.5. Simulations
We considered different combinations of various strategy revision

methods. Each agent updated its strategy randomly and independently
with probability q= 0.25 per time step. The innovation probability was
fixed at E1 = 0.01. Innovation for regular group members meant flip-
ping x (between 0 and 1). Innovation for leaders was implemented by
changing their strategy y to a number drawn randomly and in-
dependently from a PERT distribution defined on the unit interval with
the mode at the previous value y (see the SI). Selective imitation took
place with probability E2. Under selective imitation the agent compares
their payoff with that of a randomly chosen “model” and adopts the
model's strategy with a probability dependent on the difference in the
payoffs. Self-interested optimization happens at rate E3. Myopic opti-
mization for regular group members was based on evaluating the ex-
pected payoffs of the two strategies (x= 0 and x= 1) and choosing the
one with the higher payoff subject to errors. To implement optimization
for leaders (myopic best response or foresight), we first generated a
single “candidate strategy” for each leader using the same approach as
for innovation. Then the leader evaluates the expected payoff (or uti-
lity) of the old and new strategies and chooses the one with the higher
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payoff (or utility) subject to errors.
Simulations were run for 5000 time steps. Convergence to a sto-

chastic equilibrium was confirmed by visual inspection of trajectories.
The equilibrium values were estimated as the averages over the last 50
samples; samples were made every 10 time steps; 20 independent runs
for each parameter combination. Characteristic time-scale τ for con-
vergence to an equilibrium was evaluated as the time for the average y
to reach half of its equilibrium value for the first time.

In the graphs below, the tax will be specified by parameter θ = ρn/
(1 − ρ) which is the leader-to-regular member share ratio (e.g., with
θ = 1, the leader's and a regular member's shares of the reward are the
same; with θ = 2, the leader gets twice as much as a regular member).
To better see the effects of leadership and institutionalized punishment,
we focused on relatively small values of the benefit parameter b under
which groups without leaders would not make any effort in “us vs.
nature” games and a relatively low effort in “us vs. them” games.

2.3. Results for the full model

We observed that if both types of agents used only innovation and
selective imitation, cooperation and punishment were practically ab-
sent. As discussed in the Introduction, with selective imitation, regular
group members tend to imitate higher-fitness defectors which sup-
presses group production and removes the incentives for leaders to
contribute. If leaders used innovation and myopic best response, not
much punishment happened and the levels of cooperation were rela-
tively low independently of how regular group members updated their
strategies. This happens because leaders reduce monitoring and pun-
ishment to avoid associated costs.

High levels of monitoring and cooperation were observed when
regular group members used myopic best response and leaders em-
ployed either selective imitation or foresight. Next we focus on and
contrast these two scenarios with respect to equilibrium levels of pro-
duction by regular group members x, monitoring (and punishment) by
leaders y, their average payoffs πs and πl as well as the time τ to reach
an equilibrium.

Our simulations show that if benefits of cooperation are sufficiently
large relative to its cost, both methods of strategy update in leaders
result in similarly high monitoring and production. If the benefit of
cooperation is sufficiently small relative to its cost, both methods result
in the absence of monitoring and production. The differences between
the methods mostly reveals itself at intermediate benefits (see the SI).
We now consider this situation in more detail.

Fig. 1 illustrates the effects of the foresight parameter ω and relative
frequencies E2 and E3 of selective imitation and foresight in the leader's
decision making for different levels of taxation (and, consequently,
inequality). [We also allowed for random innovation at a constant small
rate E1 = 0.01.] In each graph, the leftmost set of bars (labeled θ = 0)
corresponds to the case of groups with no leaders. In this case, group
efforts are practically absent in “us vs. nature” games and are relatively
low in “us vs. them” games due to the collective action problem
(Gavrilets, 2015a, 2015b; Gavrilets & Fortunato, 2014). Adding leaders
capable and allowing for institutionalized punishment leads to the es-
tablishment of a certain level of monitoring and punishment accom-
panied by a significant increase in group effort X in both games.

Then the foresight parameters ω = 0.5 so that there is no discount
of future payoffs, relative frequencies of selective imitation E2 and
foresight E3 have weak effects in both games. As ω decreases, selective
imitation leads to higher monitoring by leaders and consequently
harsher punishment and more production by subordinates (especially in
“us vs. them” games when E2 : E3 ratio is small). In “us vs. nature”
games increased monitoring and production lead to higher payoffs for
both types of players. In contrast, in “us vs. them” games, we observe
“overproduction” and reduced payoffs for subordinates. In “us vs.
nature” games, foresight leads to higher monitoring and cooperation
than selective imitation if the cost of punishment κ is low. With larger κ,

selective imitation results in higher monitoring and cooperation. In “us
vs. them” games, if there are differences between selective imitation
and foresight, they are manifested in higher monitoring and coopera-
tion under more frequent selective imitation. It thus appears that when
leaders are more powerful, selective imitation is a better approach to
finding appropriate strategies. In “us vs. nature” games, the speed of
convergence to a stochastic equilibrium is usually the fastest when both
mechanisms operate at comparable frequencies. In “us vs. them” games,
foresight results in faster convergence if ω = 0.5 but is slower con-
vergence if ω is smaller. These are typical results (see the SI.)

One consistent difference is that under selective imitation the actual
spread of innovations across the whole population in a particular run
can happen more rapidly but there is more variation in the onset of the
transition to higher monitoring across different runs (Fig. 3).

Note that an increase in cooperation is observed even when θ = 1,
so that the leader and regular group members get an equal share of the
reward. Increasing θ does not necessarily increase production but does
affect the payoff in an obvious way (i.e. decreases it for commoners and
increases it for leaders).

Fig. 2 illustrates the effects of some parameters in “us vs. nature”
games. (Similar results are observed for “us vs. them” games, see the
SI.) Increasing benefit b and punishment κ and decreasing group size n,
the half-effort parameter X0, and precision parameter λ increase co-
operation and punishment. These results are intuitive and similar to
those in the models of peer punishment (Boyd et al., 2003; Boyd &
Richerson, 1992; Traulsen, Röhl, & Milinski, 2012). The payoffs of
leaders increase with the group size n (because large group means
larger overall tax). The same happens for regular group members in “us
vs. nature” games because with a fixed X0, a larger group size means a
smaller individual effort will be sufficient to result in a specific group
effort. In “us vs. them” games, the payoff of regular group members
only weakly depends on the group size. Increasing punishment κ in-
creases payoffs in “us vs. nature” games but decreases it in “us vs. them”
games where it causes “overproduction” (Figs.S6-S16; cf. Konrad
(2009), Gavrilets (2015b)). Increasing taxation θ decreases commoners'
production and payoff; decreasing precision λ causes higher efforts (by
errors) which is expected.

Intuitively, our results can be understood in the following way.
Consider first the case of selective imitation and innovation with no
foresight (i.e., E3 = 0). Earlier Isakov and Rand (2012) Roithmayr et al.
(2015) studied similar models of institutionalized punishment. They
showed that selective imitation can lead to the evolution of punishment
if leaders update their strategy at a much slower rate than subordinates.
A low update rate prevents leaders from abandoning a costly punish-
ment strategy before subordinates have learned to contribute to avoid
punishment. In contrast, in our model of selective imitation, sub-
ordinates do not have to learn from others via incremental improve-
ments to adapt but rather they use the best response to the current
strategy of the leader. But the overall effect is similar - monitoring and
punishment evolve by selective imitation in leaders. Let XBR = XBR(y)
be the best response value of the total group effort to a given y. Then
selective imitation in leaders will optimize the leader's payoff given by
Eq. (3b) with X substituted for XBR:

= − − −π y X ρnbP X c ny δ n X y( , ) ( ) ( ) ,l BR BR y BR (5)

Next consider the case of foresight with no selective imitation (i.e.,
E2 = 0). For a leader using strategy y who is able to predict the sub-
ordinates' total production XFR(y), the leaders utility function ul is given
by Eq. (4b) with X and X′ substitute for XFR(y):

= − − − − +u ω c ny δ n X y ωρnbP X(1 )( ( ) ) ( ).l y FR FR (6)

Both πl(y,XBR) and ul as functions of y are represented by a differ-
ence between a benefit term which asymptotically approaches a fixed
limit (ρnb and ωρnb, respectively) and a cost terms which increases
linearly with y. Both functions can have multiple local maxima. In the
case of selective imitation, a local maximum can be found by trial-and-
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error and then it can spread across system by imitation. In the case of
foresight, a maximum can be discovered by leaders via a process of
mental scenario building by considering several candidate strategies
and comparing their expected utilities. Assume that ω = 0.5 so that
leaders do not discount future. Then if the leader's prediction XFR is the
same as the group's best response XBR, the functions in the right-hand
side of Eqs. (5) and (6) differ only by a factor 0.5. This explain why our

numerical results with ω = 0.5 do not show much difference between
selective imitation and foresight in leaders. With smaller ω, leaders
using foresight discount future benefits and reduce their monitoring
efforts which leads to lower production.

Fig. 1. Average values of efforts x, y, payoffs πs, πl and the
time to equilibrium τ for 5 different combinations of fre-
quencies of selective imitation E2 and foresight E3 in leaders.
The frequencies are E2 : E3 = 0.23 : 0.01 (leaders mostly use
selective imitation, left-most bar in each set of five bars),
0.16 : 0.08,0.12 : 0.12,0.08 : 0.16 and 0.01 : 0.23 (leaders
mostly use foresight, right-most bar in each set of five bars).
The frequency of random mutation E1 = 0.01. (a) “Us vs.
nature” games for K = 1, λ = ∞ , κ = 0.5, n = 24, b = 17,
X0 = 24. (b) “Us vs. them” games for K = 1, λ = ∞ ,
κ = 0.5, n = 16, b = 4. Other parameters are at default
values (see the SI). Commoners always use innovation at rate
E1 = 0.01 and myopic best response at rate E3 = 0.24. Initial
values of x and y are assigned randomly and independently;
for regular group members, x = 0 or 1 with equal prob-
abilities, for leaders, y is chosen from a uniform distribution
on [0,0.05].
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3. Discussion

Here, we modeled social dynamics in groups composed by a number
of regular group members investing in the production or appropriation
of collective goods and a leader whose collectively endorsed role was to
identify and punish free-riders. We postulated that the institution of
monitoring and punishment by leaders is already established and stu-
died how it could become efficient. Overall our results provide theo-
retical support to empirical research in small-scale societies showing
that leadership in the form of institutionalized punishment can solve
the collective action problem (Garfield et al., 2019; Glowacki & von
Rueden, 2015).

We used our models to put the ongoing debate on the relevance and
generality of cultural group selection and self-interested design in the
evolution of social institutions (Cofnas, 2018; Richerson et al., 2016;
Singh et al., 2017; Smith, 2020) on more solid, quantitative grounds.
We implemented cultural group selection via standard selective payoff-
biased imitation (Richerson, Bettinger, & Boyd, 2005). Our results agree
with conclusions from earlier models that selective imitation can lead to
effective leadership (Hooper et al., 2010; Isakov & Rand, 2012; Powers
& Lehmann, 2013, 2014; Roithmayr et al., 2015). We implemented self-
interested design via a novel strategy updating method - foresight.

Foresight generalizes standard myopic best response for the case of

individuals caring about their future payoffs and capable of anticipating
to a certain extent future actions of their group-mates (Perry et al.,
2018; Perry & Gavrilets, 2020). Relative to the myopic best response,
foresight is more realistic and, simultaneously, not too taxing on cog-
nitive abilities of individuals and required information. We have shown
that foresight makes monitoring and punishment a utility-increasing
option (cf. Perry et al., 2018; Perry & Gavrilets, 2020). This, in turn,
leads to increased production, cooperation, and the emergence of an
effective institution for collective action by self-interested design (Singh
et al., 2017). Richerson et al. (2016) questioned the existence of “the
alternatives to [cultural group selection that] can easily account for the
institutionalized cooperation that characterizes human societies”
(p.16). Our results here offer one such alternative.

Our main and unexpected conclusion is that both mechanisms
generally lead to very similar outcomes with respect to the levels of
cooperation, punishment, and payoffs. If the benefits of cooperation are
high (low) enough, the groups cooperate (or not) under both mechan-
isms. The differences between the mechanisms appear under inter-
mediate benefits and only when the leaders strongly discount future
payoffs (i.e. foresight parameter ω is small). The intuition behind is
relatively simple, at least in hindside. Assuming best response in regular
group members, both strategies update protocols in leaders optimize
mathematically similar payoff and utility functions. As a result,
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Fig. 2. Effects of parameters benefit b, half-effort X0, group size n, punishment strength κ, precision λ, tax θ, and the foresight parameter ω on the average efforts of
regular group members x and leaders y and their payoffs πs and πl in “us vs. nature” games. Parameters are changed one at a time relative to a “default” set with
b = 16, n = 24, X0 = 24, θ = 2, κ = 0.5, λ = ∞ and ω = 0.375. Frequencies of updating events: E1 = 0.01, E2 = E3 = 0.12 in leaders and E1 = 0.01, E2 = 0,
E3 = 0.24 in regular group members.
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“optimum” solutions are similar. (These optimum solutions are dif-
ferent from the Nash equilibria in the corresponding one-shot games as
both selective imitation and foresight change the structure of the cor-
responding game.) We did observe that under some relatively narrow
ranges of parameters there were additional differences between the
mechanisms. Specifically, in “us vs. nature” games, when leaders are
not too powerful, foresight can lead to higher monitoring and co-
operation whereas with more powerful leaders, selective imitation can
outperform foresight. In “us vs. them” games, selective imitation can
lead to higher monitoring and cooperation. We remind that our con-
clusions are based on the assumption that regular group members use
myopic best response. As discussed above, if they rely exclusively on
selective imitation, not much cooperation happens (unless they update
their strategies much more often than leaders (Isakov & Rand, 2012,
Roithmayr et al., 2015)). That is, in the models considered here suc-
cessful group cooperation requires self-interested optimization in reg-
ular group members.

In the foresight model, leaders are only able to probabilistically
forecast their group's response to punishment, but cannot immediately
identify long-term optimum strategies. As a result, convergence to such
strategies happens only asymptotically. Same behavior is observed
under selective imitation. Our results also show that foresight and se-
lective imitation can interact synergistically leading to faster con-
vergence to an equilibrium if leaders use both of them. What seems to
happen is that self-interested design leads to a faster establishment of a
social innovation in a single group while selective imitation speeds up
its spread across other groups.

Although both selective imitation and foresight can result in similar
outcomes, their prerequisites differ. Selective imitation is a cognitively
simple optimization method based on learning from others with whom
the focal agent (i.e. an individual or a group) shares important char-
acteristics (so that the strategy used by the “model” remains feasible
and successful for the “mimic”). The agent using selective imitation
aims to be as successful as its model. Foresight and, more generally,
self-interested design also use social information and learning about
behavior of others. However they are not restricted to interactions with
similar agents, and agents using them can become more successful than
their social partners. Cognitive skills needed for foresight, as modeled
here, are not too demanding. Predicting others' behavior requires some
“theory of mind” which can be formed on the basis of previous

observations or just by asking a question “what would I do if I were in
their place”. With respect to group traits (such as social institutions),
foresight could “work” within a single group. In contrast, selective
imitation requires multiple groups, the transfer of relevant information
between them, and (cultural) group selection. Take a closer look at the
relative efficiency of foresight, selective imitation, fictitious play, and
reinforcement in some simple models allowing for analytical, rather
than just numerical, investigation.

Here we allowed for random innovation, selective imitation, and
two types of self-interested design - myopic best response and foresight.
Selective imitation can happen readily for regular group members who
can constantly interact with each other. However selective payoff-
biased imitation among them will not lead to increased production as
higher-payoff individuals are defectors. Selective imitation between
leaders does lead to increased production but leaders can only truly
learn from other leaders when contact is made. Myopic best response in
subordinates can lead to production as subordinates attempt to avoid
punishment. However myopic best response in leaders will not lead to
monitoring because the leaders will be motivated to avoid its im-
mediate costs. One-step foresight in subordinates does not lead to
production (Perry & Gavrilets, 2020). Intuitively, while the myopic best
response for subordinates depends on the leaders' strategy, the myopic
best response for leaders is always to do nothing. Therefore if sub-
ordinates care about the future payoff and assume that leaders use the
myopic best response, the subordinates will predict that there will be no
monitoring and punishment and thus will choose to ignore the leaders.
In contrast, one-step foresight in leaders does lead to increased mon-
itoring and subsequently in production.

In our simulations, we assumed comparable rates of strategy revi-
sion for both mechanisms. However imitation of institutions from other
groups is likely to be a rarer event than attempts to improve poorly
functioning institutions by local “means”. This implies that the relative
rate of social evolution by cultural group selection will likely be slower
than that by self-interested design. If however selective imitation is
unconstrained, the timing of adoption of a new effective institution by
different groups will be more similar than that under self-interested
design because it will spread in an infection-like fashion. (See Fig. 3
showing that transitions from low to high values of inspection fre-
quency y in individual runs are much more rapid under selective imi-
tation.)

Fig. 3. The dynamics of average values of x, y, πs and πl in 20 independent runs. (a) “Us vs. nature” game with λ= ∞ , κ = 0.75, b= 7, n= 24, X0 = 16, θ= 2 and
mostly selective imitation in leaders (E2 = 0.23, E3 = 0.01). Note that transition to high monitoring by leaders was observed in only 9 runs but if does happen, the
transition is very rapid. (b) Same as (a) but with mostly foresight in leaders (E2 = 0.01, E3 = 0.23). Transition to high monitoring by leaders was observed in all 20
runs. Initial values of x (0 or 1) are drawn randomly and independently with equal probabilities. Initial values of y of all leaders are drawn randomly and in-
dependently from a uniformly distribution on [0.00,0.05] in 20 runs. Red lines show the averages over 20 runs. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Our comparison of “us vs. them” and “us vs. nature” games parallel
earlier conclusions: the former games are more conducive for the evo-
lution of cooperation than the latter but they can also easily lead to
over-production of individual efforts and wasted payoffs. The effects of
parameters on the dynamics of punishment and cooperation are also
pretty much in line with intuition and earlier results (Gavrilets, 2015a,
2015b; Gavrilets & Fortunato, 2014; Gavrilets & Richerson, 2017).

An interesting (but not surprising) feature of our models is the ex-
istence of multiple equilibria which appear under both selective imi-
tation and self-interested design if the errors in decision-making are
small. Multiple equilibria imply significant influence of initial condi-
tions and stochastic exogenous or endogenous (e.g., due to errors in
payoff or utility evaluation) events on both transient and long-term
dynamics of social institutions.

Earlier work has shown that leaders emerge naturally under many
circumstances including leaders who specialize in punishment (Garfield
et al., 2019; Perry et al., 2018; Perry & Gavrilets, 2020; Smith et al.,
2016). Here we studied the evolution of the institute of leadership rather
than its emergence. In our paper, the evolving part of the institution was
the level of monitoring and punishment levels as in Isakov and Rand
(2012), Roithmayr et al. (2015). In Hooper et al. (2010), Powers and
Lehmann (2014) the evolving trait was the tax imposed by the leaders
while in Powers and Lehmann (2013)] it was the proportion of public
goods invested into the group's growth rate. Hooper et al. (2010),
Powers and Lehmann (2013, 2014) assumed that players culturally
inherited their strategies directly from parents (subject to rare random
mutation). In Isakov and Rand (2012), Roithmayr et al. (2015) players
used payoff-biased imitation. In contrast, we have considered and
compared a number of different strategy update methods. We also note
that recent experiments strongly points at institutionalized punishment
as a more efficient and preferred form of punishment than peer pun-
ishment and pool punishment (Fehr & Williams, 2017).

In small-scale societies leadership may or may not be associated
with receiving a higher proportion of the group-produced collective
goods Glowacki & von Rueden, 2015, Smith et al., 2016, Garfield et al.,
2019). In our models, the relevant parameter was θ - the leader's share
of the reward relative to that of a regular group member. The effects of
θ are nonlinear: under some conditions larger θ leads to more mon-
itoring, punishment, and productions while under other conditions
large θ reduce incentives for subordinates to produce collective goods.
We have not considered other potentially beneficial effects of leader-
ship such as coordination, norm promotion, or engineering specific
religious doctrines incentivizing collective actions – leaving this for
future work.

Our strategy updating method foresight is related to several existing
theoretical approaches. In particular, consideration of future benefits is
common in behavioral economics. Our utility function under foresight
(Eq. (4a)) can be viewed as a special simple case of the beta-delta model
of hyperbolic discounting (Frederick et al., 2002; O'Donoghue & Rabin,
1999, 2001; Phelps & Pollak, 1968) corresponding to just two time
steps. Predicting behavior of peers plays a central role in “beauty
contests” games (Duffy & Nagel, 1997) and level-k and cognitive hier-
archy models (Nagel, 1995b; Stahl & Wilson, 1995a). In the former, the
players attempt to predict the average choice of other players (or some
other statistic of interest). In the latter, the players follow a particular
system of reasoning which forms a hierarchy. In a simple case, level-0
individuals change their behavior completely randomly. Level-1 in-
dividuals assume that all others are of level-0 type and optimize their
behavior accordingly. Level-2 individuals assume that all others are of
level-1, etc. Such models typically focus on the coexistence of different
types of individuals, often within the context of dyadic interactions.
Foresight is different from it in two aspects. First, in our model, level-0
individuals do not change their strategies between the rounds and level-
1 types use standard myopic optimization. [We note that randomly
uniform choice of strategies is not an appropriate level-0 model in
studies of cooperation as it would predict 50% cooperation rate.]

Individuals employing foresight then corresponds to level-2 reasoning
types as they assume that others use myopic best response. Second and
most important, we explicitly include future benefits (which are com-
pletely ignored in level-k models) in the utility function of level-2 in-
dividuals. In classical game theory, players have complete information
and are fully rational. This implies that they should be able to predict
what exactly will happen (say, plays and payoffs) in any future mo-
ment. Relaxing this assumption, Jehiel (1995, 2001) assumed that each
player in a dyadic game can predict what exactly will happen over a
limited number of steps in the future. A player's prediction of what is to
come beyond his horizon of foresight is given by an exogenous noise. In
contrast, in our approach players use the theory of mind in an attempt
to predict what will happen rather than know this for sure. We also
focus on group level behavior and collective actions rather than on
dyadic games. Using agent-based simulations, De Weerd, Verbrugge,
and Verheij (2013) and Weerd, Verbrugge, and Verheij (2014) have
shown that possessing theory of mind is beneficial when participating
in dyadic games. In contrast, our work is a step towards understanding
how it affects group behavior.

There is a number of important directions for extending our work
such as explicitly considering the dynamics of population densities (as
in Powers and Lehmann (2013, 2014)), allowing for the simultaneous
presence of competition of groups with and without leaders (as in
Hooper et al. (2010), Powers and Lehmann (2013, 2014)), and allowing
for changeable rather than fixed taxes as well as for a market for leaders
(as in Hooper et al. (2010)). Foresight can be applied to any other game
with repeated interactions (dyadic or group-level). We assumed only
one level of iterated reasoning generalizing myopic optimization.
However, many people may use higher-order theories of mind. Note
that some theoretical results suggest that using more levels of iterated
reasoning does not necessarily result in higher payoffs (De Weerd et al.,
2013; Jehiel, 1995, 2001; Weerd et al., 2014). We assumed that in-
dividuals attempt to maximize their future material payoff and ne-
glected any effects of past history. An alternative is that players con-
dition their actions on the memory of past events (Press & Dyson, 2012;
Stewart & Plotkin, 2012). People are often motivated by social norms
and values (Bicchieri, 2006; Gavrilets & Richerson, 2017) and their
current actions may be influenced by what happened to them or their
groups in the past (Whitehouse et al., 2017). While we have only
considered selective imitation by payoff-biased social learning, co-
operation can also be maintained by conformity- and prestige-biased
social learning (Henrich & Boyd, 1998; Henrich & Gil-White, 2001).
These mechanisms could act synergistically with those studied here. All
these are important factors that need to be considered in future work.

Human capacity for cultural learning and selective imitation has no
doubt greatly contributed both to our uniqueness as a species (Boyd,
Richerson, & Henrich, 2011; Henrich, 2016) and to cooperative social
institutions we have built (Richerson et al., 2016). However our abil-
ities to innovate and to design and enforce certain rules and social in-
stitutions benefiting our societies or some of their segments have also
left a significant footprint in our history and will certainly continue to
be important in the future (Singh et al., 2017).
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1 Model’s variables, functions and parameters

Table S1 summarizes the model’s variables, functions and parameters.

2 Nash, best response, ESS, and QRE equilibria in “us vs. na-
ture” games without leaders

We consider a model in which the payoff to a regular group member making an effort x (= 0 or 1),
who belongs to a group making the total effort X, is

π = b
X

X +X0
− cx, (S1)

where X0 is the half-effort parameter.
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Table S1: Model variables, functions and parameters.

Symbols Their meaning

Variables x regular group member’s production effort (x = 0 or 1)

y leader’s monitoring effort (0 ≤ y ≤ 1)

Functions X total effort of the group, X =
∑
x

P (X) normalized value of the resource produced or secured by the group:

P = X/(X +X0) in “us vs. nature” games; P = X/X in “us vs. them” games

πc regular group member’s expected payoff, πc = (1− ρ)bP (X)− cx− κy(1− x)

πl, π
′
l, π
′′
l leader‘s expected payoffs, πl = ρnbP (X)− cyny − δ(n−X)y ,

π′l = −cyny′ − δ(n−X ′)y′, π′′l = ρnbP (X ′′)

ul leader’s utility with foresight, ul = (1− ω)π′l + ωπ′′l

Parameters n number of regular group members per group

b, c benefit and cost parameters for regular group members

X0 half-effort parameter in “us vs. nature” games

ρ, θ tax rate and the leader-to-regular group member share ratio; θ = ρn/(1− ρ)

cy leader’s cost of monitoring parameter

κ regular group member’s cost of being punished

δ leader’s cost of punishing a regular group member

ω weight of future payoffs in leaders’ utility function

λ precision parameter in the QRE approach

Nash equilibria. Consider a state where the total group effort X = 0. The payoff to each
individual is π0 = 0. If a single individual switches to x = 1, his payoff will be π0→1 = b 1

1+X0
− c.

Therefore the state X = 0 is a strict Nash equilibrium if π0 > π0→1 or

b/c < 1 +X0. (S2)

Consider a state where the total group effort X = n. The payoff to each individual is π1 =
b n
n+X0

− c. If a single individual switches to x = 0, his payoff will be π1→0 = b n−1
n−1+X0

. Therefore
the state X = n is a strict Nash equilibrium if π1 > π1→0 which simplifies to

2n− 1 +X0 +
n(n− 1)

X0
< b/c. (S3)

Consider a state where the total group effort 0 < X < n. The payoff to an individual contribut-
ing 0 is π0 = b X

X+X0
. If this individual switches to x = 1, his payoff will be π0→1 = b 1+X

1+X+X0
− c.

The individual will not be interested in switching if π0 > π0→1. The payoff to an individual cur-
rently contributing 1 is π1 = b X

X+X0
− c. If this individual switches to x = 0, his payoff will be

π1→0 = b X−1
X−1+X0

. The individual will not be interested in switching if π1 > π1→0. Solving the two

2



inequalities above, a state with total group effort X is a strict Nash equilibrium if

(X +X0)(X +X0 − 1)

X0
< b/c <

(X +X0)(X +X0 + 1)

X0
(S4a)

An alternative way to express this result is to say that if conditions (S2) and (S3) are not satisfied,
then there exists an unique strict Nash equilibrium at which the group effort X is an integer within
an unit-length interval (Ic − 1/2, Ic + 1/2) centered on the value

Ic =

√
1

4
+ rX0 −X0 ≈ X0

(√
r

X0
− 1

)
, (S4b)

where the benefit-to cost ratio r = b/c and the approximation assumes that r � 1/(4X0). [This
follows from the fact that, using variable u = X + X0, conditions (S4a) can be rewritten as

u(u − 1) < rX0 < u(u + 1), or equivalently,
√

1
4 + rX0 − 1

2 < u <
√

1
4 + rX0 + 1

2 .] Note that the

approximate expression above is exactly the same as the ESS solution 2 in the main text.
Best response dynamics in stochastic agent-based simulations. In numerical implementation,

we assumed that each agent updates its strategy independently with probability q. Each updating
agent evaluates the expected payoffs π0 and π1 if choosing x = 1 and x = 0 under the assumption
that all group-mates keep their strategies. Then the agent chooses to cooperate (x = 1) rather
than defect (x = 0) with probability

p =
1

1 + exp[λ(π0 − π1)]
, (S5)

where λ is a non-negative precision parameter. This formulation follows the QRE approach with
logit errors (Goeree et al., 2016). If λ →∞, the agent always chooses the best response, if λ = 0,
the agent choses x = 0 or x = 1 with equal probabilities. If λ → ∞, the dynamics converges to a
Nash equilibrium.

Figure S1 shows the equilibrium values while Figure S2 illustrates the transient dynamics.
Mixed Nash equilibria. Assume that each regular group member in a group contributes inde-

pendently an effort 1 to a collective action with probability 0 ≤ p ≤ 1. Following Archetti (2009),
the probability that there are j contributors among n− 1 group mates of the focal individual is

fj =

(
n− 1

j

)
pj(1− p)n−1−j , (S6)

where
(
n−1
j

)
is the corresponding binomial coefficient. Then the expected payoff to a focal individual

if he cooperates is

π1 =

n−1∑
j=0

fj

(
b

j + 1

j + 1 +X0
− c
)
. (S7)

If the focal individual defects, his expected payoff is

π0 =

n−1∑
j=0

fjb
j

j +X0
. (S8)

The mixed Nash equilibrium for p can be found from equality π1 = π0. Using a symbolic
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Figure S1: Average effort X of an acephalous group in stochastic simulations in “us vs. nature” games for different
values of parameters X0, b and λ. The dashed lines show the ESS prediction (2a). Other parameters: n = 24, c = 1,
probability of strategy updating q = 0.25. The simulations were run for 2,000 times steps; 20 runs for each parameter
combinations; the averages were evaluated over the last 1,000 time steps.

manipulation program and the Pfaff transformation, the latter can be simplified to

F (2, 1− n;X0 + 2; p)

1 +X0
=
c

b
, (S9)

where F (...) is the hyper-geometric function. Equation (S9) can be solved for p numerically (or
graphically). One can show graphically that a positive solution exists only if b/c > 1 + X0, i.e. if
the benefit to cost ratio is sufficiently large.

QRE equilibria. Within the realm of the QRE approach with logit errors (Goeree et al., 2016),
an individual chooses to cooperate (x = 1) rather than defect (x = 0) with probability p given by
equation (S5) above. The QRE solution for p satisfies the equality

ln(p(1− p))
λ

= π0 − π1 (S10)

(Goeree et al., 2016). Note that as λ → ∞, the QRE solution converges to the mixed Nash
equilibrium considered above. The QRE values can be found by numerically solving the above
equation.

Potential games and stochastic equilibria. A game is an exact potential game if there is a
real-valued function ψ(z) defined on the space of strategies z = (z1, . . . , zn) such that whenever
player i unilaterally changes its strategies from zi to z′i, the corresponding change in his payoffs
πi(z) − πi(z

′) is equal exactly to the change in potential function, ψ(z) − ψ(z′) (Monderer and
Shapley, 1996). The players of a potential game act as if they are jointly attempting to maximize
the potential function. In any finite potential game, best response dynamics always converge to a
Nash equilibrium (Hofbauer and Sandholm, 2002, Xu, 2016).

Consider the general public goods game with payoffs in the form πi(z) = G(z) − ci(zi). [Note
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Figure S2: Dynamics of group efforts X under stochastic best response in “us vs. nature” games for different
X0 and b values. G = 32, n = 24. Single run for each parameter combination. Each graph shows G different lines
representing efforts of G groups. Probability of updating is 0.25; λ = ∞.

that our “us vs. nature” game is a special case of this game.] Then the potential function

ψ(z) = G(z)−
∑

ci(zi) (S11)

(Myatt and Wallace, 2009).
With multinomial-logit quantal response updating, the ergodic probability that the system is

found in a state z is

Pr(z)
∣∣
t→∞ =

exp(λψ(z))∑
z′ exp(λψ(z′))

(S12)

(Myatt and Wallace, 2009). The above equation allows one to find the equilibrium stochastic
distribution of different strategies in “us vs. nature” games numerically.

3 Nash equilibria in “us vs. nature” games with leaders

Assume first that the monitoring effort of a leader is fixed at y. Comparing the expected payoffs of
regular group members given by eq. (1) and (3a) of the main text, we see that a constant level of
monitoring (and punishment) effectively means that the regular group members are engaged in a
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collective action with the benefit and cost parameters adjusted to b(1− ρ) and c−κy, respectively,
so that the relevant benefit-to-cost ratio is

r = b(1− ρ)/(c− κy).

As inequalities (S4a) show, each value of the group effort X is stable for a range of values of
the benefit-to-cost ratio r. Specifically, as one increases r, the value of r at which the state with
X = i− 1 becomes unstable and the state with X = i becomes a Nash equilibrium is

ri =
(X0 + i)(X0 + i− 1)

X0
.

Because the leaders’ effort is costly, the (Nash) equilibrium value of y will be a minimum value still
compatible with stability of state X = i. This minimum value is

yi =
1

κ

(
c− b(1− ρ)

ri

)
.

This strict Nash equilibrium state with X = i, y = yi is meaningful if 0 ≤ yi ≤ 1. The leader’s
payoff at such a state is

πl,i = bnρ
i

X0 + i
− cynyi − δ(n− i)yi.

For a given set of parameters, there can be multiple Nash equilibria (i, yi) with different expected
payoffs to the leader πl,i and different domains of attraction. The corresponding stochastic dynamics
are expected to wander among these equilibria perhaps settling predominantly on one of them. We
have explored these dynamics numerically in the main text.

4 Equilibria in “us vs. them” games without leaders

Consider first dyadic between-group conflicts. With two groups making efforts X and Y , respec-
tively, in a conflict over a resource of value 2b, the expected payoff to a member of the first group
can be written as

π =

{
2b X

X+Y − cx, if X + Y > 0,

b, if X + Y = 0.

To identify Nash equilibria in this model using the results from the previous section (specifically,
inequalities S4a) we need to consider all combinations of X and Y where each variable takes values
from 0, . . . , n.

The state X = Y = 0 is a Nash equilibrium if b < c (because in this case, b is larger than
2b− c).

From inequalities (S4a) with X0 = X and b substituted for 2b, a symmetric state with Y = X
is a Nash equilibrium if

X − 1/2 ≤ b/(2c) ≤ X + 1/2. (S13)

That is, X = Y = 1 is stable for 1 < b/c < 3, X = Y = 2 is stable for 3 < b/c < 5, and so on.
Alternative, we can say that at the symmetric Nash equilibrium X is an integer closest to b/(2c):

b

2c
− 1

2
< X <

b

2c
+

1

2
.
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One can also show that for b/c = 2k + 1 where k is an integer, there are also additional Nash
equilibria in the form X = k, Y = k + 1 and X = k + 1, Y = k for k = 0, 1, 2, . . . One can show
there are no other asymmetric Nash equilibria (i.e., with |Y −X| > 1).

In the case of G competing groups, let us define

π =

{
Gb X

X+
∑

Y − cx, if X +
∑
Y > 0,

b, if X +
∑
Y = 0,

where
∑
Y is the sum of efforts of other G− 1 groups.

State X = 0 is a Nash equilibrium if Gb− c < b, i.e. if

b/c <
1

G− 1
.

From eq. (S4a) and b substituted for Gb, the symmetric state X > 0 with X0 = (G−1)X is a Nash
equilibrium if

X +
X − 1

G− 1
< b/c < X +

X + 1

G− 1
.

Alternatively, we can write the above inequalities as(
1− 1

G

)
b

c
− 1

G
< X <

(
1− 1

G

)
b

c
+

1

G
.

As G increases, X becomes close to b/c. That is, with large G such an equilibrium exists only if
b/c is an integer. With large G, the ranges of stability of these symmetric equilibria become very
narrow.

There are also many asymmetric equilibria. For example, consider a focal group with X = 0
in a system where all other groups are making nonzero efforts. Nobody in the focal group will be
willing to make an effort unless b > c(

∑
X + 1), where

∑
X is the sum of efforts over all groups.

Numerical results suggest there is a very large number of asymmetric equilibria with the average
group effort X close to b/c. As the number of groups in the system grows, the system exhibits non-
equilibrium dynamics (at least at the time scale of our simulations). See Figure S3 and Figure S4
here.

Mixed Nash equilibria. Assume that each individual in a group contributes independently
an effort 1 to a collective action with probability 0 ≤ p ≤ 1. The (mixed) Nash equilibrium value
of p satisfies the equation for expectations

E(π0) = E(π1), (S14a)

where E(πx) is the expected payoff of an individual making effort x. The expected payoff of a
defector can be written as

E(π0) = Gb E

(
i

i+ j

)
, (S14b)

where i ∼ Bin(n− 1, p) and j ∼ Bin(n− 1 + (G− 1)n, p) are independent random variables drawn
from the corresponding binomial distributions. The expected payoff of a cooperator can be written
as

E(π1) = Gb E

(
1 + i

1 + i+ j

)
− c. (S14c)

While the exact calculation of the expectations of the two ratios above does not seem to be possible,
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Figure S3: Average effort X of an acephalous group in stochastic simulations in “us versus them” games for
different values of parameters n, b and λ. The dashed lines show the ESS prediction (2b). Other parameters: c = 1,
probability of strategy updating q = 0.25, number of groups G = 2. Note that X levels off at the maximum possible
size X = n.

we can approximate these expectations using a formula based on the second order Taylor expansion
for the expectation of a ratio of two random variable (here x and y):

E(x/y) ≈ E(x)/E(y)− cov(x, y)/E(y)2 + var(y)E(x)/E(y)3, (S15)

where cov(x, y) is the covariance of x and y, and var(y) is the variance of y (Stuart and Ord, 2010).
This approach is justified if the variance var(y) and covariance cov(x, y) are both much smaller
than E(y)2. In our case, this assumption is satisfied if the group size n is not too small. The
relevant expectations are:

E(i) = (n− 1)p,

E(i+ j) = [n− 1 + (G− 1)n]p,

var(i+ j) = [n− 1 + (G− 1)n]p(1− p),
cov(i, i+ j) = (n− 1)p(1− p).

Making appropriate substitutions, one ends up with a cubic equation for p which can be solved
numerically. Figure S5 shows the corresponding solutions for the total group effort X∗ = np∗ as a
function of the benefit b. These solutions are well approximated by the ESS values (??b) given in
the main text.

Effects of ω on regular group members’ payoffs. The leaders’ effort y always increases
with ω. To understand the effect of ω on regular group members in “us vs. nature” games,
assume that regular group members use best response and that the regular group members effort
is described by the ESS solution (2a) of the main text

X∗ = X0(
√
R− 1), (S16)

8



Figure S4: Dynamics of group efforts X under stochastic best response in “us versus them” games for different G
and b values. n = 24. Single run for each parameter combination. Each graph shows G different lines representing
efforts of G groups. Probability of updating is 0.25; λ = ∞.

if R > 1 and X∗ = 0 otherwise. With punishment by leaders

R ≡ (1− ρ)b

(c− κy)X0
.

Using equation (3a) of the main text, the total payoff of n regular group members is

πc(y,X) = (1− ρ)nbP (X)− cX − κy(n−X), (S17)

Assume that R > 1. Taking the derivative, we find that

dπc(y,X)

dy
=

(√
R

(n+ 1)X0

2
− n−X0

)
κ

The expression in the right-hand side of the last equation is always positive if X0 > 2n/(n − 1).
Therefore if regular group members best response is positive, increasing y typically further increases
their effort X and their payoffs.

If R < 1 and the best response for regular group members X∗ = 0, then increasing y always

9
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Figure S5: Mixed Nash equilibrium values in “us vs. them” games with G = 2 and 100 for n = 24, c = 1.
Equilibrium values are found numerically by solving equations (S14) with help of approximation (S15).

decreases their payoffs.

5 Modeling innovation

In our numerical simulations, innovation for leaders was implemented by perturbing their strategy
y by a number drawn randomly and independently from a PERT distribution defined on the unit
interval with the mode at the current value. The PERT distribution belongs to a family of beta-
distributions; it was offered as a simple alternative to using a truncated normal or a triangular
distributions Clark (1962) and is now widely used in risk analysis.

The advantages of using the PERT distribution are that it is simple to use (no additional
parameters relative, e.g. to stepwise mutation), smooth (relative to the triangular distribution),
is biased towards previous values (relative to the uniform distribution), and has no discontinuous
spikes (relative to truncated normal distribution). Our additional simulations using a truncated
normal and a uniform distributions show that the equilibrium values are not affected much by the
underlying distribution of innovations which mostly affect the time to convergence.

Consider a PERT distribution defined on the interval [a, c] with the mode at b (a ≤ b ≤ c). Its
cumulative distribution function is the incomplete beta function Iz(α, β) where

z =
x− a
c− a

, α = 1 + 4
b− a
c− a

, β = 1 + 4
c− b
c− a

In our case, a = 0, b = y, c = 1. To generate a random number from this distribution we used
Matlab function betaincinv(u, α, β), where u is a random number from a uniform distribution.

6 Additional agent-based simulations

Figure S6 illustrates the effects of parameters in “us vs. them ” games. This Figure is analogous
for Figure 2 in the main text.

Figure S7 illustrates the possibility of multiple equilibria for “us vs. nature” games. In the
simulations shown, the initial values of y were chosen in a uniform way across the range of values

10
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Figure S6: Effects of parameters benefit b, group size n, punishment strength k, and precision λ, tax θ, and the
foresight parameter ω on the average efforts of regular group members x and leaders y and their payoffs πc and
πl in “us vs. them” games. Parameters are changed one at a time relative to a “default” set with b = 16, n =
24, θ = 2, κ = 0.5, λ = ∞, ω = 0.375.F requenciesofupdatingevents :E1 = 0.01, E2 = E3 = 0.12 in leaders and
E1 = 0.01, E2 = 0, E3 = 0.24 in regular group members.

between 0 and 1 and the effects of stochasticity were reduced by making precision parameter λ
infinite and greatly restricting the range of innovations.

The graphs S4-S15 below aim to show the transition from the state with no punishment and
production (with smaller values of b) to punishment and production (with larger values of b). The
values of b for which such a transition happens depend on the punishment parameter κ, with
stronger punishment allowing for the transition at smaller benefits b. To make the patterns clearer,
we only show the case of perfect precision λ =∞. With smaller λ, there are naturally more noise
in the data.
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Figure S7: An example of multiple equilibria in “us vs. nature” games. Shown are the dynamics of average values of
x, y, πc and πl in 20 independent runs. Parameters: λ = ∞, κ = 0.75, b = 8, n = 8, X0 = 8, θ = 8 and mostly selective
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uniform distribution within a narrow band; the bands for different runs did not overlap and covered the whole range
of possible y values. Innovation was modeled by perturbing an original value of y by a random number drawn from a
truncated normal distribution with zero mean and a small standard deviation σ = 0.025. Red lines show the averages
over 20 runs. In the case shown, there are four different locally stable equilibria.

12



0

0.1

0.2

0.3

x

ω=0.25

0

0.5

1

y

0

0.5

1

π
s

0

1

2

π
L

0 1 2 4
0

950

1900

τ

ω=0.375

0 1 2 4

ω=0.5

0 1 2 4

(a) κ = 0.25, b = 15

0

0.1

0.2

0.3

x

ω=0.25

0

0.5

1

y

0

1

2

π
s

0

1

2

3

π
L

0 1 2 4
0

1850

3700
τ

ω=0.375

0 1 2 4

ω=0.5

0 1 2 4

(b) κ = 0.25, b = 16

0

0.1

0.2

0.3

x

ω=0.25

0

0.5

1

y

0

1

2

π
s

0

2

4

π
L

0 1 2 4
0

400

800

τ

ω=0.375

0 1 2 4

ω=0.5

0 1 2 4

(c) κ = 0.25, b = 17

0

0.1

0.2

0.3

x

ω=0.25

0

0.5

1

y

0

0.5

1

π
s

0

1

2

π
L

0 1 2 4
0

1950

3900

τ

ω=0.375

0 1 2 4

ω=0.5

0 1 2 4
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(h) κ = 0.75, b = 7
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Figure S8: Equilibrium values of x, y, πc, πl, τ in “us vs. nature” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 16, X0 = 16
and initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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Figure S9: Equilibrium values of x, y, πc, πl, τ in “us vs. nature” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 24, X0 = 16
and initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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Figure S10: Equilibrium values of x, y, πc, πl, τ in “us vs. nature” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 32, X0 = 16
and initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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Figure S11: Equilibrium values of x, y, πc, πl, τ in “us vs. nature” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 16, X0 = 24
and initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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Figure S12: Equilibrium values of x, y, πc, πl, τ in “us vs. nature” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 24, X0 = 24
and initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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Figure S13: Equilibrium values of x, y, πc, πl, τ in “us vs. nature” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 32, X0 = 24
and initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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(h) κ = 0.75, b = 12

0

0.2

0.4

0.6

x

ω=0.25

0

0.5

1

y

0

1

2

π
s

0

2

4

6

π
L

0 1 2 4
0

650

1300

τ

ω=0.375

0 1 2 4

ω=0.5

0 1 2 4

(i) κ = 0.75, b = 14

Figure S14: Equilibrium values of x, y, πc, πl, τ in “us vs. nature” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 16, X0 = 32
and initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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Figure S15: Equilibrium values of x, y, πc, πl, τ in “us vs. nature” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 24, X0 = 32
and initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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(f) κ = 0.5, b = 22
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Figure S16: Equilibrium values of x, y, πc, πl, τ in “us vs. nature” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 32, X0 = 32
and initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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(h) κ = 0.8, b = 2
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Figure S17: Equilibrium values of x, y, πc, πl, τ in “us vs. them” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 16 and
initial values y = 0. With θ = 0, the leader’s effort is set to 0.

22



0

0.1

0.2

0.3

x

ω=0.25

0

0.5

1

y

0

0.5

1

π
s

0

2

4

π
L

0 1 2 4
0

100

200

τ

ω=0.375

0 1 2 4

ω=0.5

0 1 2 4

(a) κ = 0.25, b = 1
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(b) κ = 0.25, b = 2
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(c) κ = 0.25, b = 4
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(d) κ = 0.5, b = 1
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(e) κ = 0.5, b = 2
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(f) κ = 0.5, b = 4
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(g) κ = 0.8, b = 1

0

0.2

0.4

x

ω=0.25

0

0.5

1

y

0

1

2

π
s

0

5

10

π
L

0 1 2 4
0

100

200

τ

ω=0.375

0 1 2 4

ω=0.5

0 1 2 4

(h) κ = 0.8, b = 2
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(i) κ = 0.8, b = 4

Figure S18: Equilibrium values of x, y, πc, πl, τ in “us vs. them” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 24 and
initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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(a) κ = 0.25, b = 1
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(b) κ = 0.25, b = 2
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(c) κ = 0.25, b = 4
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(d) κ = 0.5, b = 1
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(e) κ = 0.5, b = 2
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(f) κ = 0.5, b = 4
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(g) κ = 0.8, b = 1
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(h) κ = 0.8, b = 2
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(i) κ = 0.8, b = 4

Figure S19: Equilibrium values of x, y, πc, πl, τ in “us vs. them” games for different tax θ, benefit b, and cost of
punishment κ parameters. Within each set, different bars correspond to different combinations of the frequencies of
selective imitation E2 and foresight E3 in leaders. Specifically, from the left-most bar to the right-most bar the ratio
E2 : E3 is equal to 0.23 : 0.01 (i.e, predominantly, selective imitation), 0.16 : 0.08, 0.12 : 0.12, 0.08 : 0.16, 0.01 : 0.23
(predominantly foresight). The frequency of random mutation E1 = 0.01. Other parameters:λ = ∞, n = 32 and
initial values y = 0. With θ = 0, the leader’s effort is set to 0.
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