
 on December 18, 2015http://rstb.royalsocietypublishing.org/Downloaded from 
rstb.royalsocietypublishing.org
Review
Cite this article: Gavrilets S. 2015 Collective

action problem in heterogeneous groups. Phil.

Trans. R. Soc. B 370: 20150016.

http://dx.doi.org/10.1098/rstb.2015.0016

Accepted: 21 August 2015

One contribution of 13 to a theme issue

‘Solving the puzzle of collective action through

inter-individual differences: evidence from

primates and humans’.

Subject Areas:
behaviour, evolution, genetics,

theoretical biology

Keywords:
altruism, cooperation, mathematical modelling,

collaboration, evolutionarily stable strategies

Author for correspondence:
Sergey Gavrilets

e-mail: gavrila@tiem.utk.edu
& 2015 The Author(s) Published by the Royal Society. All rights reserved.
Collective action problem in
heterogeneous groups

Sergey Gavrilets1,2,3

1Department of Ecology and Evolutionary Biology, 2Department of Mathematics, and 3National Institute for
Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA

I review the theoretical and experimental literature on the collective action pro-

blem in groups whose members differ in various characteristics affecting

individual costs, benefits and preferences in collective actions. I focus on evol-

utionary models that predict how individual efforts and fitnesses, group

efforts and the amount of produced collective goods depend on the group’s

size and heterogeneity, as well as on the benefit and cost functions and par-

ameters. I consider collective actions that aim to overcome the challenges

from nature or win competition with neighbouring groups of co-specifics.

I show that the largest contributors towards production of collective goods

will typically be group members with the highest stake in it or for whom

the effort is least costly, or those who have the largest capability or initial

endowment. Under some conditions, such group members end up with smal-

ler net pay-offs than the rest of the group. That is, they effectively behave as

altruists. With weak nonlinearity in benefit and cost functions, the group

effort typically decreases with group size and increases with within-group

heterogeneity. With strong nonlinearity in benefit and cost functions, these

patterns are reversed. I discuss the implications of theoretical results for

animal behaviour, human origins and psychology.
1. Background
Group living, which is widespread in animals, has both fitness benefits and costs,

thus group-living species have developed various adaptations for dealing with

their social environments [1–3]. Group-living animals necessarily have to coordi-

nate many of their activities such as eating, sleeping or moving. In some species,

individuals also actively collaborate with their group-mates, for example in terri-

torial defence, hunting or breeding. In particular, our ancestors were involved in

collective large-game hunting and between-group conflicts over territories,

mating and other resources. Because of the economy of scale, within-group collab-

oration can be very profitable, especially for humans. In modern humans,

collaboration happens at all levels of human society.

Group-living implies interdependence, collective actions, shared benefits and

shared costs. Interdependence and shared interests, however, do not eliminate

conflicts of interests of group-mates. Even when cooperation benefits all partners,

they will probably end up not cooperating because they can see the advantages of

free-riding or fear the dangers of being exploited by others who may choose to

free-ride. As a consequence, defection becomes a dominant strategy in the Prison-

er’s Dilemma [4], individuals withdraw their efforts in production of a collective

good [5], or members of a commune fail to exercise self-restraint in exploitation

of a communal resource, destroying it as a result [6]. Adam Smith’s powerful

metaphor of the ‘invisible hand’ emphasizes unintended social benefits that can

result from individuals’ pursuit of personal interests. However, in the words of

Russell Hardin, when engaged in collective actions ‘. . .all too often we are less

helped by the benevolent invisible hand than we are injured by the malevolent

back of that hand; that is, in seeking private interests, we fail to secure greater

collective interests’ [7, p. 6].

How various social dilemmas, i.e. conflicts between individual and collective

interests, can be resolved has been a subject of intense observational, experimental

and theoretical work across a variety of scientific disciplines including economics,
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evolutionary biology, anthropology and psychology. Here,

I will be concerned with one particular set of social

dilemmas—the collective action problem (CAP) within the

context of collective goods production [5,7]. This is a situa-

tion when group members can make an individually costly

effort towards achieving some group-beneficial goals

(e.g. hunting a large game or defending the territory) but

because individuals potentially can receive the benefits with-

out having contributed to their production, they have an

incentive to reduce their effort or withdraw it completely.

If enough individuals fail to contribute, the collective benefit

is not produced and everybody suffers.

Systematic theoretical studies of collective action started

50 years ago with a publication of Mancur Olson’s book

The Logic of Collective Action in 1965 [5]. Olson’s book offered

three main insights/hypotheses:

— the group-size paradox: collective goods provisioning

decreases with the group size;

— exploitation of the great by the small: the largest benefi-

ciary of the collective good bears a disproportionately

large burden of its production; and

— selective incentives (i.e. reward and/or punishment) and

institutional designs can help large groups overcome

the CAP.

Olson’s Logic has had a tremendous impact on a diversity of

social sciences (see [7–12] for summaries of more recent

work). However, it appears to be somewhat ignored in evol-

utionary biology. (According to the Web of Science database,

the book has been cited more than 7500 times. Of these, less

than 1% is in the evolutionary biology literature.) Nevertheless,

the ideas from economics have percolated into theoretical evol-

utionary biology and have been developed both further and

independently into an impressive array of new directions. By

now, it is well appreciated that increasing the group size typi-

cally makes cooperation more difficult (Olson’s first main

insight) and that punishment is an efficient way to promote

cooperation (a part of Olson’s third main insight). However,

the effects of within-group heterogeneity (Olson’s second

main insight) are much less understood.
(a) Review goals
My general goal here is to review the theoretical work on

the CAP that might be particularly interesting and relevant

for behavioural evolutionary biologists, anthropologists and

psychologists. The important role of the CAP in undermining

within-group cooperation in between-group territorial conflicts

is well recognized by evolutionary primatologists [13–19]

as well as by some other behavioural biologists [20–23].

In the anthropological literature, the existence of the CAP

in between-group conflicts [24–26] as well as in hunting and

other types of collective production [27–29] is also well

acknowledged. In particular, the facts that foragers apparently

have ‘limited needs’ and that their work efforts are surprisin-

gly modest have been linked to their culture of sharing, which

makes food and other objects public goods [27,30]. Earlier

discussions by Hawkes [27] and Nunn & Lewis [15] used

simple two-player games to illustrate the CAP. While there is

indeed a substantial theoretical literature on dyadic interactions

[31], two-player games are not necessarily very informative

about multiplayer dynamics. I will be looking at collective
actions involving more than two individuals simultaneously

in further sections.

An inherent feature of most animal and human groups

involved in collective activities is their heterogeneity. Group

members may differ in how much they value the collective

good, how many resources they have, how much cost they pay

per unit of effort and so on. Olson [5] argued that this heterogen-

eity would often lead to the situations where ‘there is a systematic

tendency for ‘exploitation’ of the great by the small’ (p. 29). That

is, some individuals (e.g. those with the highest stake in the

collective good or for whom the effort would be least costly, or

those who have the largest initial endowment) would contribute

all the effort while the rest of the group-mates will free-ride

contributing nothing. (In Olson’s terminology, a group with

individuals whose benefits from a collective action exceed the

associated costs even if they are solely borne by these individuals

is a ‘privileged group’.) Subsequent theoretical work, mostly in

the economics literature, explored this issue in detail (see

below). However, as noted earlier, the insights from this work

have not been applied much to biological and anthropological

problems (although the potential importance of within-group

heterogeneity in biological CAPs was recognized by Nunn &

Lewis [13,15]). Below I will discuss the relevant theoretical and

experimental results in detail.

Even though the amount of work on the CAP published in

the economics literature is enormous, there are certain limit-

ations on its applicability to biological questions. While

the analysis of economics models typically focuses on Nash

equilibria (NE, at which individuals aim to maximize their

absolute gain), biological models usually study evolutionarily

stable strategies (ESS, at which natural selection maximizes

the individuals’ relative gain). NE and ESS can lead to rather

different predictions [32–34]. Economics models often ignore

the question how individuals can identify an appropriate NE,

whereas in evolutionary models the question of convergence

to an ESS is of primary importance. Moreover, many NE

identified by game theory methods are evolutionarily irrele-

vant [35, ch. 5]. Economics models also typically ignore

many evolutionary factors, such as group selection, genetic

relatedness, spatial structure and migration, which all can sig-

nificantly affect evolved social behaviour. These considerations

imply that additional studies of biologically inspired models

are often needed.

My main focus will be on models relevant for evolutionary

biology within a broad cross-specific perspective. I will pay

special attention to the evolution of social instincts, that is,

genetically based propensities that govern the behaviour of

individuals in social interactions. As first argued by Darwin

[36], social instincts have evolved by natural and sexual

selection. In modern perspective, these instinctive social beha-

viours are plastic, resulting from the interaction of the genotype

with the social environment [37]. Within this framework, indi-

vidual behavioural strategies change by random mutation (and

recombination). However, some of the conclusions emerging

from using this approach may also be valid for other strategy

revision protocols used in evolutionary game theory, such as

learning or myopic optimization [38].
(b) Alternative approaches
There are a number of alternative theoretical approaches for

studying collective actions which will not be covered in this

study. I briefly discuss them here. I will be concentrating on
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models describing the CAP in situations when group mem-

bers pay individual costs to share group benefits. For

discussions of models describing the ‘tragedy of the com-

mons’ [6], when group members receive individual benefits

but share costs, see e.g. [39–43]; some relevant empirical

evidence on the effects of heterogeneity is reviewed in

[44,45]. I will consider models focusing on NE and ESS; for

related work using other equilibrium concepts, e.g. those

that include errors in decision-making or learning, see

[38,46–50]. I will focus on models explicitly allowing for a

single type of individual effort such as voluntarily contributing

to production of a collective good. More complex models that

allow for multiple types of individual efforts simultaneously

(e.g. contributing to production and punishing defectors

[51–54]) are outside of the scope of my review. I will assume

that groups are formed exogenously. For recent reviews on

endogenous coalition formation in the theoretical and biologi-

cal literatures, see [55] and [56], respectively. In the models to

be discussed, exact spatial arrangement of groups is largely

irrelevant. Public goods games (PGG) in spatially structured

populations have been recently reviewed in Perc et al. [57].

In models to be discussed below, individuals will make

their decisions about the actions to take simultaneously.

There is, however, an alternative approach to modelling

collective actions which explicitly assumes that individuals

make decisions about their efforts sequentially [9,58–64].

In this case, the group behaviour may exhibit a threshold

effect: once there is a critical mass of contributors, everybody

else also starts contributing. The ‘first movers’ can be individ-

uals with the highest interest in the collective good. In some

of these models, group members are basing their decisions not

(only) on the benefit/cost considerations but rather on a simple

behavioural rule: contribute and/or participate if a certain

number or proportion of other individuals are already partici-

pating (‘bandwagon effect’) [58]. These models have been used

for describing social mobilization, formation and diffusion of

social movements, spread of social unrest and contagion

through social networks while allowing for stochasticity in

decision-making, effects of learning beneficial strategies and

a possibility that some individuals (e.g. ‘organizers’) promote

cooperative behaviour of others [59,61–63,65,66]. This work

is outside of the scope of my review.
(c) Review structure
The literature on multiplayer evolutionary games and

collective action is quite diverse [67,68]. In the case of dyadic

interactions with just two discrete strategies, all possible

games can be classified in an unambiguous way. With

continuous strategies and/or with multiple players such a

classification becomes much more difficult [69,70]. Rather

than trying to use such a classification, I will structure my

discussion around two general types of social interactions

which I will call ‘us versus nature’ games and ‘us versus

them’ games [71]. These games correspond to two general

types of collective actions in which our ancestors were almost

certainly engaged. The first type includes group activities

such as defence from predators, some types of hunting or

food collection, use of fire, etc. The success of a particular group

in these activities largely does not depend on the actions of

neighbouring groups. The second type includes direct conflicts

and/or competition with other groups over territory and other

resources including mating. The success of a particular group
in an ‘us versus them’ game definitely depends on the actions

of other neighbouring groups. The outcomes of both types of

collective actions strongly affect individual reproduction as

well as group survival. ‘Us versus nature’ games comprise

typical collective action models with linear or nonlinear pay-

off functions [72–75]. ‘Us versus them’ games correspond to

models of between-group contests in economics theory [76].

Below I start by outlining a general approach for modelling

collective actions in evolutionary biology. Then I consider ‘us

versus nature’ and ‘us versus them’ games separately. For

each type of games, I summarize results on homogeneous

groups before discussing the behaviour of models describing

heterogeneous groups. I will illustrate analytical results

using a series of numerical examples based on a simple

model linking the two types of games. I will also review

relevant experimental economics research.
2. Mathematical models and their predictions
Let us consider a population of individuals subdivided into G
groups each of size n individuals. Assume that individual i
in group j makes an effort xij towards the group’s success

in a collective action. Effort xij can be treated as a binary vari-

able (e.g. taking only two values: 0 and 1) or a non-negative

continuous variable. Individual efforts of group members are

aggregated into a group effort Xj. Following the economics lit-

erature, I will call the function converting individual efforts

x1j, . . . , xnj into group effort Xj the impact function. The most

common impact function in the literature is linear:

Xj ¼
X

i

xij: ð2:1aÞ

Two other examples are the ‘weakest-link’ when Xj is equal to

the minimum of xij values in the group and the ‘best-shot’

when Xj is equal to the maximum of xij values. In some

models, individuals differ in their strengths and/or capabili-

ties si and the impact function is defined as Xj ¼
P

isixij, so

that individuals with largest si values have the largest effect

on Xj [77,78]. Some work uses the ‘constant elasticity of

substitution’ (CES) impact function [79,80]

Xj ¼
X

i

x1=a
ij

 !a

, ð2:1bÞ

which will play an important role in discussions below.

Here a is a non-negative parameter which can be interpreted

as a measure of within-group synergicity or collaborative

ability [71]. If collaborative ability a is very small (a�1),

the group is only as efficient as its member with the largest

effort (Xj � maxiðxijÞ). Increasing collaborative ability a

while keeping individual efforts the same increases the

group effort Xj. If all group members make an equal effort x,

then Xj ¼ nax: The latter function is related to the Lanchester–

Osipov model used in military research [81,82] and also in

evolutionary biology [83,84].

I will specify the individual pay-off as

fij ¼ fij,0 þ bijPj � cijxij: ð2:2Þ

Here, fij,0 is a baseline pay-off, bij the value of group j’s suc-

cess to individual i and cij the cost parameter for this

individual. Function Pj is a non-decreasing function of Xj

and, potentially, of other groups’ efforts; it gives the normal-

ized value of the resource produced by group j as a result of
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collective effort; we normalize Pj relative to a maximum poss-

ible reward size (0 � Pj � 1) so that it measures the success of

collective action (actual or expected). Using economics termi-

nology, I will call this function the production function in us

versus nature games and contest success function in us

versus them games. In some models, one assumes that indi-

vidual i in group j gets share vij of the total prize Bj, so that

bij ¼ vijBj: If group members share the reward equally,

vij ¼ 1=n: In equation (2.2), the benefit and cost terms contrib-

ute additively to individual pay-off. More complex functions

can also be used (for example, multiplicative [39,85]). Note

also that equation (2.2) assumes that individual cost, cijxij, is

linear in individual effort xij but nonlinear functions are

also used often (see below).

Individual pay-offs define individual fitness (i.e. reproduc-

tive success) wij. There are different ways to specify wij. For

example, when individuals compete over the whole population

wij ¼
fij
�f

, ð2:3aÞ

where �f is the average pay-off in the whole population. Assum-

ing that group j contributes a share Sj of offspring to the next

generation and that individuals compete for reproductive suc-

cess within the groups, wij ¼ Sjð fij=�fjÞ, where �fj is the average

pay-off in group j. With high-risk collective actions and

between-group competition, group extinction becomes possi-

ble. If the probability that group j survives between-group

competition and contributes to the next generation is pro-

portional to the degree of success Pj in a collective action and

the spots of groups going extinct are repopulated by duplicating

surviving groups, then

wij ¼
Pj
�P

fij
�fj

, ð2:3bÞ

where �P is the average of Pj.

These models describe multi-level selection operating

at both within- and between-group levels [86]. Group-level

selection favours large individual efforts xij (which would

increase the probability/degree of group success Pj), while

individual-level selection favours low efforts xij (which

would reduce the individual costs term cxij) creating an

incentive to free-ride. What makes it beneficial to free-ride

is that all group members share the benefit of high Pj

values at least partially independently of their individual

contributions to the group’s success. Using fitness function

(2.3a) implies that groups are formed randomly each gener-

ation. In the case of animal and human groups, this

assumption is difficult to justify biologically, but it leads to

simpler mathematics and has been used in the majority of

theoretical papers on cooperation in evolutionary biology.

Fitness function (2.3b) is more appropriate if groups retain

their identity from generation to generation as is the case in

most biological populations.
(a) Us versus nature games
In us versus nature games, the probability/degree Pj of group

j success depends on the group effort Xj but does not depend

on the efforts of other groups. Most published modelling

work corresponds to fitness function (2.3a) and uses an

assumption (implicitly or explicitly) that groups are formed

randomly at the beginning of each generation.
(i) Homogeneous groups
First, I discuss the evolutionary dynamics in the case when

groups are homogeneous (see [31,68] for recent thorough

reviews). In such groups, we can set fij,0 ¼ 1, bij ¼ b and

cij ¼ c. In the simplest case of linear impact and production

functions, also known as an N-player Prisoner’s Dilemma

game, fi ¼ 1þ ðk=nÞX � cxi, where k is a reward factor (by

which the group contribution X is multiplied before the

reward is divided between n group members). (Here and

below I drop subscript j specifying the group both for simpli-

city of notation and also because economics models usually

focus on a single group while evolutionary biology models

usually assume that groups have identical structure). In this

model, group members would jointly benefit if they all

make a positive effort x as long as k . c. However, the logic

of the Prisoner’s Dilemma prevents this from happening [31]

and the groups end up contributing nothing (unless the

reward is very high, k . nc, so that the pay-off from one’s

own action, k/n exceeds the cost c).

Although the N-player Prisoner’s Dilemma game is the

most popular model for studying cooperation in groups, it is

by no means the only reasonable model [68]. In the Volunteer’s

Dilemma model [72], it is assumed that a single volunteer can

produce a collective good of value b to everybody (which cor-

responds to a step production function). Naturally, each group

member prefers others to pay the cost of production. In this

model, if b . c, there is a symmetric mixed equilibrium with

the probability of defection being ðc=bÞ1=ðn�1Þ
, 1: Weesie &

Franzen [87] showed that cost sharing among contributors

increases the probability of volunteering. Archetti [74] has

generalized this model in a number of directions including

cases when individual benefit is an S-shaped function of the

total number of volunteers and when group members are

genetically related. The latter factor increases the probability

of volunteering.

The Volunteer’s Dilemma is related to the Snowdrift

game as well as to the Hawk–Dove and Chicken games

[31], in all of which cooperation is a preferable strategy if

the opponent does not cooperate. Zheng et al. [88] studied

an N-person Snowdrift game with cost sharing among contri-

butors. They showed that cooperators can be maintained in

the population at a small frequency (approximately 1/n
with large n). Similar conclusions emerge in a version of an

N-person Stag Hunt game in which it pays to contribute to

a public good if there is a certain number of other contribu-

tors [89]. For generalizations to other types of production

functions, finite population size and variable population size,

see e.g. [90–93]. All of the above work assumed binary indi-

vidual efforts, i.e. xij could be only 0 or 1. If individuals’

efforts are continuous and costs and/or benefits are certain

nonlinear functions of the efforts, then at a NE group

members are predicted to make a certain non-zero effort

[94–96]. Doebeli et al. [97] studied a continuous multi-

player Snowdrift game with quadratic production and cost

functions. They showed that under some conditions, the

population evolves either to a monomorphic state where

everybody contributes a small effort or it evolves, via an evol-

utionary branching [98], to a dimorphic state where some

individuals contribute a large effort while the rest free-ride.

Frank [85] studied a model with multiplicative interactions

of individual costs and group benefits. In his model, it is

beneficial to make an effort if nobody else in the group

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.

5

 on December 18, 2015http://rstb.royalsocietypublishing.org/Downloaded from 
contributes. Frank showed that individuals always make a

positive contribution which is inversely proportional to the

group size. Allowing for within-group genetic relatedness

or an accelerated increase in costs and benefits with efforts

increases individual efforts [85].

A general prediction of nonlinear models of homogeneous

groups is thus that under some conditions groups will produce

collective goods. With discrete strategies, there will be a

small proportion of contributors while the rest will free-ride.

With continuous strategies, the groups will be represented

either by mild cooperators (i.e. individuals making small

contributions) or by a mixture of a small number of coopera-

tors making substantial contributions and a large number

of defectors. Increasing group size typically decreases

within-group cooperation.
Soc.B
370:20150016
(ii) Heterogeneous groups
Within-group heterogeneity can be introduced in a number

of different ways. Earlier work (reviewed in [8]) focused

on heterogeneity in initial endowment/wealth of group

members and used linear impact, production and cost

functions. This corresponds to pay-off being written as

fi ¼ fi,0 þ ðk=nÞX � cxi, where fi,0 is the baseline pay-off

(endowment) of individual i. An earlier theoretical study

[99] predicted an increase in total public good production

as the distribution of endowments becomes more unequal.

Andreoni [100] showed that at a NE, the contributors will

include only the wealthiest individuals (i.e. individuals

with fi,0 larger than a certain threshold). In the limit of a

very large group size, there will be just a single contri-

butor—the wealthiest group member. These results, which

supports Olson’s logic, are conditioned on the use of

linear functions. In Frank’s model [85] with multiplicative

interactions of costs and benefits, individuals contribute

proportionally to their endowments, whereas the group

effort does not depend on the distribution of endow-

ments. Moreover, in his model all individuals have an

equal fitness/pay-off at equilibrium, independently of their

initial endowment.

A substantial effort has focused on models with hetero-

geneity in valuation bi and cost ci parameters. With some

nonlinear production and/or cost functions, all group mem-

bers are predicted to make a contribution and the group

effort does not necessarily increase with within-group

inequality/heterogeneity; see [79] and [101] for examples

with n ¼ 2. McGinty & Milam [102] analysed a case with

an arbitrary group size assuming quadratic benefit and cost

functions. They predicted that individuals will contribute in

proportion to their ratios, bi/ci, of valuation to cost par-

ameters. Some recent work analysed an asymmetric version

of the Volunteer’s Dilemma assuming that individuals

differ with respect to how much they value the public good

(bi) and how much cost (ci) each would pay to produce it.

In particular, Diekmann [73] identified a mixed strategy equi-

librium at which the probability of defection is proportional

to bi/ci, so that ‘strong’ players (i.e. with higher valuation

and/or lower cost) will be more likely to defect (see [103]).

This solution is counterintuitive in that it directly contradicts

Olson’s conjecture about the exploitation of the great by the

small. He et al. [104] generalized results in [73] for the case

of genetically related individuals in a simplified version in

which there is one ‘strong’ player, with benefit and cost
parameters bs and cs, and n21 identical ‘weak’ players, with

parameters bw and cw, where bs=cs . bw=cw: They showed

that genetic relatedness between group-mates increases

cooperation. In a follow-up paper, however, He et al. [105]

argued that the mixed equilibrium identified by Diekmann

[73] is evolutionary unstable. They also showed the existence

of two other ESSs. At one ESS, the collective good is produced

by the strong player while all n21 weak players defect. At the

other ESS, the strong player always defects while weak players

defect with a certain probability. He et al. [105] argued that

the former equilibrium has a larger domain of attraction and

therefore is more relevant biologically.

A general, and intuitive, conclusion of this body of work

is that individual efforts increase with individual benefit/cost

ratios and endowments. Linear models exhibit a threshold

effect so that group members contribute to production only

if they are above a certain minimum value in a relevant

characteristic. In nonlinear models, all individuals contribute

but to a different extent, with some contributions being

very low. Group efforts usually increase with within-group

inequality but there are exceptions.
(iii) Examples
I will attempt to illustrate and clarify the above diversity of

theoretical results using a simple model as a reference

point. Besides its simplicity, this model also allows for com-

parisons between us versus nature games and us versus

them games to be discussed below. Specifically, I define the

degree of success (production function) for group j by a

saturating function

Pj ¼
Xj

Xj þ X0
, ð2:4Þ

[71]. Here, X0 is a parameter specifying the group effort Xj at

which the degree of success is 50%; the larger X0, the more

group effort Xj is needed to secure the success. I will call X0

the half-success effort. I will assume that within each group

individuals have equal baseline pay-offs, fi,0 ¼ 1, but differ in

valuation bi and cost ci parameters and that groups have

identical distributions of these parameters among their

members. Below I will consider how the predicted individual

efforts, pay-offs and fertilities, group efforts and degree of

success in producing the collective good depend on the

group size, within-group heterogeneity, half-success efforts,

the shape of impact and cost functions, and benefit and cost

parameters. I will present analytical results and will also

illustrate them numerically.

In deriving analytical approximations, I used an invasion

analysis/adaptive dynamics approximation assuming that

within-population genetic variation is very low ([98,106]; see

[71,77] for applications of these methods to similar models).

Numerical simulations show that theoretical conclusions

remain valid at a qualitative level even in the presence of

some genetic variation. The derivations are straightforward,

so to save space I do not show them here. The equations I do

show assume, for simplicity, that the number of groups G is

very large.

In analytical approximations, models’ behaviour depends

on certain individual-specific benefit-to-cost ratios, which

I will denote as ri. To describe the effects of within-group

heterogeneity in ri, it is convenient to use a heterogeneity

measure based on the notion of the generalized mean.
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Given a set of individual characteristics r1,. . .,rn and a

parameter q, the generalized mean is Mq ¼ ð1=nÞ
P

i r1=q
i

� �q
:

In this notation, the arithmetic mean is M1, the harmonic

mean is M21 and so on. Below I will use a normalized version

of the generalized mean, Hq ¼Mq=M1: If all individuals are

identical (i.e. ri ¼ r), Hq ¼ 1 for all q. As one introduces vari-

ation in ri, Hq decreases if q . 1, but increases if q , 1.

Parameter Hq thus captures the effects of within-group het-

erogeneity. (It also depends on the group size n, but this

dependence is relatively weak).

In numerical simulations, following Gavrilets &

Fortunato [77], I posit that individuals have identical cost

parameters (ci ¼ 1) but differ in benefit parameters. I specify

the latter as bi ¼ viB: I assume the total benefit per group B is

fixed and that individuals are ranked according to the share

vi of B they receive. This share is set to be proportional to a

power function of individual rank i: vi � ðnþ 1� iÞd: Here

d is a parameter measuring the degree of inequality: with

d ¼ 0, all shares are equal to 1/n and the groups are egalitar-

ian; with d ¼ 1, share vi is a linear function of individual rank

i; and with d . 1, it is a decreasing, concave-up function of

rank. In simulations, I used five values of d ¼ 0.25, 0.5, 1, 2

and 4. The ranks were assigned randomly at the beginning

of the generation (e.g. based on strengths). Figure 1 illustrates

the effect of d on shares vi. For simplicity of interpretation, in

my numerical results within-group heterogeneity will be cap-

tured by d rather than by Hq. In implementing the model

numerically, I assumed, following earlier work [84,77,107],

that individual efforts at each rank were controlled by differ-

ent loci, so that in each individual only one locus was

expressed, corresponding to his rank. Generations were dis-

crete and non-overlapping. I allowed for mutation, free

recombination and migration. There were two sexes but

only one of them (males) was engaged in collective actions.

Group selection was captured by making each group in the

new generation to independently descend from a group in

the previous generation with probability proportional to Pj.

In surviving groups, each female produced two offspring

while reproductive success of males was proportional to

their pay-off fij. In models with no group extinction, all off-

spring dispersed randomly and groups were formed

randomly at the beginning of each generation. In models

with group extinctions, male offspring stayed in their native
groups while females dispersed randomly (as in chimpanzees

and probably our ancestors [108]). See Gavrilets & Fortunato

[77] for additional details of simulation methods.

Basic model. First, consider the case with no group extinction

(i.e. using fitness function (2.3a)) and linear cost and impact

functions. It is useful to define parameters ri ¼ bi=ðciX0Þ
equal to the individual benefit divided by the cost at half-

success effort, and use a normalized group effort Z ¼ X=X0:

Let individuals be ranked according to ri and there be no ties.

In this model, the population evolves to a state at which

within each group only an individual with the highest benefit

to cost ratio, r1, can make an effort while all other group-mates

always contribute nothing. Rank-1 individual contributes only

if r1 . 1; his effort (and that of the group) then is Z ¼ ffiffiffiffi
r1
p � 1:

Note that the condition r1 . 1 can be rewritten as a require-

ment for the share of the reward going to the rank-1

individual to be high enough: v1 . vcrit ¼ c1X0=B: In this

case, the highest valuator benefits from producing the

collective good even if acting alone.

Figure 2a illustrates these results for the case of no variation

in cost parameters (ci ¼ 1). The figure shows that the group

effort increases with increasing within-group inequality and

decreasing group size; both these factors increase the share of

the highest valuator v1. With n ¼ 8 and low inequality or

with n ¼ 16, contributions are practically absent except for

small ‘noise’ due to recurrent mutation. Allowing for group

extinction (i.e. using fitness function (2.3b)) changes the

dynamics considerably (figure 2b). Now, all individuals with

valuations above a certain threshold vcrit make non-zero contri-

butions which increase linearly with their valuations vi. The

group effort X weakly depends on within-group heterogeneity

and group size. Note that in spite of within-group inequality in

shares of the reward, variation in fertilities is relatively modest,

both with and without group extinction. Note also that under

some conditions the highest valuator has lower fertility than

his ‘subordinate’ group-mates (e.g. with group extinction).

Nonlinear costs. Second, assume that the cost term in pay-off

equation (2.2) is �cxgij with g . 1. This implies that costs of

small efforts are insignificant but costs rapidly increase as efforts

become larger. This model’s behaviour is qualitatively different

from that with linear costs. Now, the relevant benefit-to-cost

ratios are ri ¼ bi=ðciX2
0Þ and R ¼

P
ri: (Note that with no vari-

ation in individual costs, i.e. if ci ¼ c, R is equal to the total

benefit B ¼
P

bi divided by the total cost at half-success rate

cX2
0:) There is no minimum valuation anymore for making a

contribution and each individual makes a positive effort pro-

portional to r1=ðg�1Þ
i : The normalized group effort Z increases

monotonically with the product of the benefit-to-cost ratio R, a

power function of group size, ng�2, and heterogeneity par-

ameter Hg�1 computed using ri values. (Specifically, Z solves

the equation gZg�1ðZþ 1Þ2 ¼ Rng�2Vg�1:) With quadratic costs

(i.e. if g¼ 2), the group effort depends neither on the group

size nor on within-group heterogeneity, and individual contri-

butions are linearly proportional to ri. With 1 , g , 2, the

group effort decreases with group size n and increases with vari-

ation in ri. With, g . 2, the situation is reversed: the group effort

increases with group size n and decreases with variation in ri.

Figure 3a,b illustrates these results for the case of no

variation in cost parameters (ci ¼ 1). Allowing for group extinc-

tion (i.e. using fitness function (2.3b)) increases individual

efforts (figure 3c,d). The effects of within-group inequality

greatly decrease, while those of the group size diminish for

g ¼ 1.5, but are augmented for g ¼ 2.5.
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Synergicity. Third, instead of an additive impact function

let us use the CES function (2.1b) with collaborative ability a.

The behaviour of this model depends on the benefit-to-cost

parameters ri ¼ bi=ðciX0Þ and R ¼
P

ri, a power function of

group size na�2 and heterogeneity parameter Ha�1 computed

using the corresponding ri values. If Rna�2Ha�1 , 1, the

groups make no effort. Otherwise individual contributions

are proportional to ra=ða�1Þ
i and the normalized group effort

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rna�2Ha�1

p
� 1: In a special case of a ¼ 2, the group

effort does not depend on the group’s size or heterogeneity,

and individual contributions are proportional to r2
i : With

1 , a , 2, the group effort decreases with group size n and

increases with variation in valuations vi. With, a . 2, the

situation is reversed: the group effort increases with group

size n and decreases with variation in valuations vi.

Figure 4a,b illustrates these results for the case of no variation

in cost parameters (ci¼ 1). With group extinction (i.e. using
fitness function 2.3b), individual efforts greatly increase

(figure 4c,d). The effects of within-group inequality greatly

decrease, while those of group size diminish for a¼ 1.5, but

are augmented for a¼ 2.5. Note that with synergicity (i.e. with

a . 1), groups can make significant total effort with much smal-

ler individual efforts, which explains why the height of bars in

figure 4 is smaller than that in figure 3.

Conclusions on examples. In the basic model, individuals

defect if rewards are small but cooperate in securing big

rewards. Increasing the reward size causes an increase in

the efforts of high valuators but it can also decrease the

efforts of low valuators who would increasingly free-ride.

Increasing inequality decreases the efforts of low valuators

but this is overcompensated by increased efforts of high

valuators. As a result, with linear cost and impact functions,

the group effort increases with inequality and decreases with

group size. With linear costs, there is a threshold effect:
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individuals contribute only if their valuation is above a cer-

tain critical value. In nonlinear models, all individuals

contribute to public goods production. With linear costs,

there is high dispersion of efforts within groups. However,

this dispersion is reduced with quadratic costs and, especially,

with synergicity. With highly nonlinear cost and benefit func-

tions, the group effort can increase with group size and

can decrease with inequality. Allowing for group extinction

results in two main effects. First, all group members contribute

proportionally to their valuations. Second, individual and

group efforts as well as the degree/probabilities of success

significantly increase. In most cases, individual share of repro-

duction grows with rank/valuation. But there are some cases

where highest valuators (who are simultaneously the biggest

contributors) have lower fertility than other individuals

because of the costs paid.

(iv) Experimental games
Us versus nature games with homogeneous groups have

been studied intensively in experiments. In linear PGG,

contributions typically show a continuous decline [109]. How-

ever, in nonlinear PGG, contributions are often maintained at

intermediate values, as predicted by models [96].

There has been also a substantial effort to study PGG with

heterogeneous groups. However, the results are somewhat

inconsistent because of differences in implementation and var-

ious social, historical or other factors [102,110,111]. In an early

review of experimental work on PGG, Ledyard [109] con-

cluded that asymmetry of benefits had negative effects on

contributions. Fisher et al. [112] showed that individuals with

lower valuation to cost ratios vi/ci contribute less than those

with high values of this ratio, as predicted by the theory.

Chan et al. [113] provided some experimental support for an

increase in public good provision with inequality in wealth,

again as predicted. However, in the experiment conducted
by Buckley & Croson [110], less wealthy individuals contribu-

ted the same absolute amount (or more as a percentage of their

income) as the more wealthy. In Anderson et al. [111], inequal-

ity reduced contributions to a public good for all group

members, regardless of their relative position. In Reuben &

Riedl [114], individuals differed in their valuation vi of

reward. With no punishment of free-riders, total contributions

were higher with inequality. Punishment did not significantly

increase total earnings but strongly increased inequality at the

cost of low-benefit members. Consequently, with punishment,

low-benefit members did not benefit from being part of a

privileged group. Secilmis & Güran [115] studied the effects

of differences in endowment. They observed higher average

contributions in egalitarian groups. With inequality, high-

endowment individuals contributed more in the absolute

sense but approximately the same percentage of their endow-

ment; contributions by individuals with the same endowment

decreased with increasing group inequality. Diekmann and

co-workers [116,117] studied the asymmetric Volunteer’s

Dilemma with punishment. In their experiments, within-

group social dynamics led to a state where punishment was

mostly administered by individuals for whom it was less

costly. Kölle [78] allowed for differences in valuation vi and

capabilities/strengths si. Without punishment, heterogeneity

in valuations did not increase the average effort but that in capa-

bilities did increase it. Punishment was much more effective

with variation in capabilities than with that in valuations or

with no variation. As noted above, with quadratic benefit and

cost functions, individuals are predicted to contribute in pro-

portion to their benefit to cost ratios. Experimental results by

McGinty & Milam [102] largely support this prediction.

(b) Us versus them games
A limitation of Olson’s theory is that he considered the CAP

as a phenomenon within a single group assuming that
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external threat to the group does not exist or can be treated as

constant [118]. Here I review the us versus them games that

explicitly capture the effects of other groups on the degree/

probability Pj of the focal group’s success. The most com-

monly used function for specifying Pj in us versus them

games in the economics literature is the Tullock contest

success function

Pj ¼
XjP

Xk
, ð2:5Þ

[76,119,120], which is also used in evolutionary biology

models [34,84,107,121–123]. Note that the denominator in

the equation above can be written as Xj þ
P

k=jXk: This

implies that functions (2.4) and (2.5) become identical if we

interpret half-success parameter X0 as the total effort of all

other groups in the population,
P

j=iXj:

(i) Homogeneous groups
Katz et al. [124] (see also [76,125]) studied a conflict between

two groups for a prize. They assumed that individual costs

grew linearly with the efforts and that the reward was divided

equally within the winning group. They also allowed for differ-

ences in group sizes and in how groups valued the prize.

A conclusion of their analysis is that at a NE, the group in

which individuals have a higher valuation of the prize, will

expend more effort and will have a higher probability of win-

ning. This implies that a smaller group in which individuals

have higher valuation of the prize (because, in the case of suc-

cess, each group member would get a larger amount) will have

a higher probability of winning. This is another example of

Olson’s group size paradox but in the context of between-

group contests. With multiple groups of equal size n, each

of which values the prize equally, the equilibrium group

effort is X ¼ B/nc [76]. Individual contributions are not

defined uniquely, but if each group member contributes

equally, x ¼ X/n. However, if individual costs are certain

nonlinear functions of efforts, an increase in the group size

can raise the group effort [126].

So far, I have discussed models with endogenously speci-

fied valuations/shares. It is also possible that individual

shares are defined by outcomes of an additional within-group

conflict. Such nested or multi-level contests have also been

studied [118,123,127–130] with a general conclusion that exter-

nal conflicts cause increasing within-group cooperation and

reduced free-riding.

(ii) Heterogeneous groups
Baik [131] generalized the Katz et al. [124] model for a case of a

multi-group contest in which group members differ in their

valuations (or shares) of the prize (see also [76]). His prediction

is that within each group only an individual with the highest

valuation of the prize will make a positive contribution while

the rest will contribute nothing. This result implies that neither

the group size nor the distribution of valuations among n – 1

other group members matter. However, if individual efforts

are limited from above by a certain exogenously specified

value, then multiple individuals can become contributors

within each group and alternative equilibria with different

sets of contributors become possible [34,131,132]. Epstein &

Mealem [133] studied a contest between two groups. They

showed that if individual costs are specific nonlinear functions

of individual efforts, then all group members contribute in
proportion to their valuations and free-riding is reduced. Simi-

lar behaviour is predicted for the CES impact function

[101,134]. In the case of weak-link contests, analysis predicts

multiple equilibria including those with no free-riding at all

[135]. In best-shot contests, there can be ‘perverse equilibria’

in which the highest valuation players completely free-ride

on others by exerting no effort [132]. Allowing for group

extinction results in that multiple individuals with highest

valuations start contributing rather than a single individual

[77]. The latter paper also predicts an increased group effort

with within-group inequality and reduced net benefit (fertility)

of high valuators relative to their free-riding group-mates

(see below and also [136]). Choi et al. [137] studied a model

of a contest between two groups of size n ¼ 2 in the presence

of both within-group power asymmetry and conflict over the

share of the reward. They showed that high within-group

inequality can increase the group effort in external con-

flict but the effect depends on the degree of synergicity of

individual contributions.
(iii) Examples
To illustrate and extend these results, I will use contest

success function (2.5) assuming no variation in baseline

pay-offs ( fi,0 ¼ 1), but within-group heterogeneity in benefit

and cost parameters which I will write as biG and ci. (The

reason for scaling the benefit parameter by G is that with

similar group efforts Pj � 1=G, so that the expected benefit

per group is bi as in ‘us versus nature’ games.)

Basic model. Consider the basic model with linear impact and

cost functions, and no group selection [131]. In this model, the

relevant benefit-to-cost ratios are ri ¼ bi/ci; only the individual

with the highest ri value always makes an effort x1 ¼ r1 while

all other group-mates always free-ride. Figure 5a illustrates

this model numerically for the case of equal costs (ci ¼ 1).

As predicted, there is a single contributor—the highest

valuator—whose effort increases with within-group inequality.

Note a sharp decline in fertility of the highest valuator with

inequality which can be substantially smaller than that of

other individuals. That is, the highest valuator behaves as

an altruist.

Adding group extinction to the basic model by using pay-

off function (2.3b) leads to a model studied by Gavrilets &

Fortunato [77]. As mentioned above, in their model, there

is a threshold valuation vcrit so that only individuals with

vi . vcrit will contribute at ESS while all other group-mates

will free-ride. The group effort increases with inequality.

Fitness of high valuators can be smaller than that of low

valuators in spite of the fact that the former are getting the

biggest share of the reward. Under some conditions, fitness

of the highest valuators can be very close to zero so that

they can be viewed as effectively sacrificing themselves for

the benefit of their groups. Figure 5b illustrates this model

numerically assuming all ci ¼ 1.

The behaviour of the highest valuators may seem altruis-

tic but, as explained in [77], actually it is not. For example,

in the case of hierarchical groups, dominant individuals

maximize their fitness by contributing; given the subordi-

nates do not contribute at all, dominants will not be better

off by reducing their contribution. Thus, the non-contributors

are indeed free-riding, but the contributors are not altruis-

tic; paradoxically, they are acting in their own interest by

contributing to the collective good. What is driving their
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Figure 5. Collective action in the ‘us versus them’ game with production function (2.5) without (a) and with (b) group extinction. Additive impact function, linear
costs function. (Online version in colour.)

0

1

2

ef
fo

rt
s

n = 16n = 8n = 4

0

0.5

1.0

fe
rt

ili
ty

n = 16n = 8n = 4

0

1

2

ef
fo

rt
s

n = 16n = 8n = 4

0

0.5

1.0
fe

rt
ili

ty

n = 16n = 8n = 4

0

2

4

ef
fo

rt
s

n = 16n = 8n = 4

0

0.5

1.0

fe
rt

ili
ty

n = 16n = 8n = 4

0

2

4

ef
fo

rt
s

n = 16n = 8n = 4

0

0.5

1.0

fe
rt

ili
ty

n = 16n = 8n = 4

(b)(a)

(c) (d)

Figure 6. Effects of nonlinear costs in the ‘us versus them’ game. First column (a,c): g ¼ 1.5, second column (b,d): g ¼ 2, second column g ¼ 2.5. (a,b) No
group extinction, (c,d ) with group extinction. (Online version in colour.)
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contribution is that they are essentially competing with their

counterparts in other groups rather than with their own

group-mates.

Nonlinear costs. Assuming nonlinear costs term �cxgij has a

qualitatively similar effect to that in us versus nature games.

The relevant benefit-to-cost ratios are ri ¼ bi/ci and R ¼
P

ri:

The group effort X solves the equation gXg ¼ Rng�2Vg�1

with individual efforts being proportional to r1=ðg�1Þ
i : For

example, with g ¼ 2, at an ESS the group effort is X ¼
ffiffiffiffiffiffiffiffi
R=2

p
and each group member contributes: xi ¼ ðri=RÞX: Note that

X does not depend on the distribution of ri within the group

or the group size n. The total cost spent by the group is

cX2 ¼ B/2, that is, one-half the overall benefit. Individual

pay-offs depend linearly on valuations. With 1 , g , 2, the

group effort decreases with group size n and increases with

variation in valuations vi. With g . 2, the situation is reversed.

Figure 6a,b illustrates these results numerically for the case

of equal costs parameters (ci ¼ 1). Allowing for group extinc-

tion (i.e. using fitness function (2.3b)) results in increasing
individual efforts (figure 6c,d). The effects of within-group

inequality greatly decrease, while those of group size diminish

for g ¼ 1.5, but are augmented for g ¼ 2.5.

Synergicity. Using impact function (2.1b) has a qualitatively

similar effect to that in us versus nature games. The predicted

group effort X is X ¼ Rna�2Va�1 and individual efforts are

proportional to ra=ða�1Þ
i : For example, if a¼ 2, the group effort

at ESS is X¼ R and each group member contributes effort

xi ¼ r2
i X: The total cost paid by the group is C ¼ B

P
r2

i which

is minimized in egalitarian groups (i.e. with ri¼ 1/n). Individual

pay-offs are fi ¼ 1þ Brið1� viÞ: With 1 , a , 2, the group

effort decreases with group size n. With a . 2, the situation

is reversed.

Figure 7a,b illustrates this model numerically for the

case of equal costs parameters (ci ¼ 1). The effects of allowing

for group extinction are similar to those in other models

(figure 7c,d ).

Conclusions on examples. Overall, the behaviour of these

models parallels that of us versus nature models considered
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above but individual and group efforts are always higher. In us

versus nature games, groups often cooperate only if a corre-

sponding benefit-to-cost ratio exceeds a certain threshold. By

contrast, in us versus them games, groups always contribute a

non-zero effort. Modelling predictions depend on benefit-to-

cost ratios ri ¼ bi=ðciX0Þ or ri ¼ bi=ðciX2
0Þ in us versus nature

games and ri ¼ bi=ci in us versus them games. We can compare

these two types of games directly by setting X0 ¼ 1. Then in the

basic model, in games against nature collective good is pro-

duced if r1 . 1 and the total group effort is
ffiffiffiffi
r1
p � 1: In us

versus them games, groups always make an effort equal to r1.

With quadratic costs, the group efforts are a solution of the

equation 2XðX þ 1Þ2 ¼ R and
ffiffiffiffiffiffiffiffi
R=2

p
, respectively, where

R ¼
P

ri: With collaborative ability a ¼ 2, the group efforts

are
ffiffiffiffi
R
p
� 1 (which requires R . 1) and R, respectively. In all

these cases, group efforts in us versus them games are higher

than in us versus nature games. I conclude that direct compe-

tition with other groups is much more conducive for the

evolution of cooperation than collaboration against nature.
(iv) Experimental games
Experimental work on contests including between-group con-

tests was recently reviewed comprehensively by Dechenaux

et al. [138]. A general conclusion of their analysis is that

between-group contests greatly increase individual efforts

(up to five times the Nash equilibrium prediction) and mitigate

the within-group free-rider problem. A number of experimen-

tal studies both in the economics and evolutionary biology

literatures have also incorporated group selection in their

design by either penalizing groups making the lowest efforts

or rewarding groups making the highest efforts [139–143].

These studies show that adding group selection further

increases both individual and group efforts.

Most experimental studies assume identical players

within each group. One notable exception is Sheremeta
[144], who allowed for within-group variation in valuation.

Sheremeta found that with a linear production function, all

players expend significantly higher efforts than predicted

by theory. In best-shot contests, most of the effort is expended

by strong players, whereas weak players free-ride. In weak-

est-link contests, there is almost no free-riding and all

players expend similar positive efforts. Experiments also

strongly confirm that individual efforts are higher when

members of the group are rewarded proportionally to their

efforts rather than equally [127,145,146].
3. Discussion
The ability of groups to be successful in potentially profitable

collective actions, aiming to overcome nature challenges or

win competition with neighbouring groups of co-specifics, is

undermined by a number of factors. One is the possibility of

free-riding. If individual efforts are costly and at least some

benefits of a collective action can be enjoyed independently

of the level of participation, individuals can withdraw their

effort to take advantage of this situation or avoid being taken

advantage of by others. Another factor is within-group hetero-

geneity in various characteristics that affect decisions of

individuals, such as the valuation or share of the prize, cost

of efforts, individual capability, strength and personality.

Such heterogeneity, which is ubiquitous both in animal and

human groups, augments the conflict between individual

interests. There is also a need to be able to efficiently coordinate

group activities. Moreover, the success of collective actions is

affected by exogenous and/or stochastic factors.

A substantial effort of theoreticians in several disparate

research areas has been devoted to understanding the CAP

in heterogeneous groups. The existing body of work

reviewed above allows one to make certain generalizations

about factors affecting individual efforts and group success
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in collective actions. Theoretically, individual efforts, the

amount of within-group free-riding and the likelihood of

the group’s success depend on (i) the group size and compo-

sition, (ii) how efforts of individuals are converted into fitness

costs, (iii) how efforts of individual group members are aggre-

gated into a group effort, (iv) how the latter is translated into

the group’s success, (v) how success in a collective good pro-

duction affects the group’s survival, and (vi) how members of

surviving groups divide the prize if successful. Information on

these aspects of collective actions is needed if one is to apply

theoretical predictions to specific groups, populations or species.

A very common theoretical conclusion is that the largest

beneficiaries of collective goods will make the largest contri-

butions towards their production (but see [73,147]). Some

models, e.g. with linear impact and cost functions, predict

disproportionately large contributions of the ‘great’ who are

exploited by the ‘small’ [5]. In these models, there can be

one or few contributors per group while the rest free-ride.

Other nonlinear models predict that all group members will

contribute proportionally to their endowments or the ratio

of the valuation of the prize/goods to the cost of individual

effort. In humans, high contributors can also increase their

reputation which would allow them to get better mates and

allies [148].

A paradoxical novel prediction of recent work is that

group members who are getting the biggest share of the

reward or who value the reward the most can end up

with the smaller net pay-offs than the rest of the group

([77] and above). This happens because such individuals

make disproportionately high efforts and, as a result, pay

very high costs. The possibility of group extinctions aug-

ments these effects. Intuitively, for the case of groups

with a dominance hierarchy, once such a hierarchy is estab-

lished and the shares of the reward going to dominant

individuals are fixed, they are mostly competing not against

their group-mates but against their peers in other groups. This

between-peer competition drives the evolution of increasingly

large efforts. Under some conditions, high valuators have

essentially zero fitness, that is, they effectively sacrifice them-

selves for the benefit of the group. This self-sacrifice is not

opposed by selection because, first, it is expressed con-

ditionally on the rank (which is assigned randomly) and,

second, it is not subject to within-group selection (only to

between-group selection).

The group effort in a collective action (as well as the

degree/probability of its success) increases with the benefit

and decreases with the cost parameters. This is intuitive.

The effect of the group size on the group effort is complex.

Group size can have negative, zero or positive effect on the

group production. For example, members of small groups

can value the same reward more than members of large

groups (because their absolute shares will be larger). This

would result in larger efforts of smaller groups. However, if

individual costs grow rapidly with their efforts, or if there

is a hard limit on individual efforts, or if a goal of a collective

action simply cannot be accomplished by a single individual

or few individuals, larger groups will be at an advantage

(because small individual efforts can be ‘compensated’ by a

large number of contributors). Similarly, the effects of

within-group heterogeneity on the group effort vary. They

are positive in linear models, absent in some nonlinear

models and negative in models with high synergicity or

strong nonlinearity in cost functions. Overall, I conclude
that both the first and second Olson’s insights require certain

qualifications (as was already stressed earlier [8,12]).

The effects of parameters and modelling assumptions in

the two types of games considered here are qualitatively simi-

lar. However, individual and group efforts are much lower in

us versus nature games than in us versus them games. In the

former, the success of one group in a collective goods pro-

duction does not affect that of another group. By contrast,

in the latter one group’s success means another group’s fail-

ure. This difference results in stronger natural selection in the

us versus them models which in turn produces a larger evol-

utionary response in individual contributions. In us versus

nature games, groups under-contribute, so that the group

effort is smaller than what would be an optimum for the

group. By contrast, in us versus them games, groups over-

contribute as they would be better off if the efforts spent on

between-group competition were minimized. Allowing for

group extinction greatly increases individual contributions

in both types of games.

Most of my discussion focused on within-group differences

in cost–benefit ratios, shares of the reward or endowments.

However, within-group differences in strengths or capabilities

will result in similar effects. That is, stronger or more capable

group members are predicted to be the biggest contributors

[77,78]. I also assumed that groups had similar size, structure

and that they valued the reward equally. The differences in

valuation and sizes between groups are converted into the

differences in valuation between individuals from different

groups; individuals (and groups) with higher valuations will

make more effort as discussed above. Another possible exten-

sion concerns production function (2.4) and contest success

function (2.5) which can be generalized to Pj ¼ Xb
j =ðX

b
j þ Xb

0 Þ
and Pj ¼ Xb

j =
P

Xb

k , respectively, where b is a ‘decisiveness’

parameter. Large values of b imply that small changes in

group efforts can cause significant changes in Pj. Increasing b

above one does not change the results qualitatively but

increases individual efforts [77,71].

Models show that with certain nonlinear cost and impact

functions, efficient within-group collaboration becomes poss-

ible. The important factor here is not nonlinearity per se, but

the underlying assumptions. For example, with quadratic costs

(g ¼ 2), small individual efforts are very ‘cheap’, while large

individual efforts are very ‘expensive’. Similarly, with large

synergicity parameter a, a substantial group effort can emerge

from small individual contributions. These are conditions

simplifying collective actions with significant participation.

Full participation can also be promoted by within-group

communication [149] and punishment [150].

Genetic relatedness is a powerful force promoting

cooperation [40,86,151]. Some theoretical studies reviewed

above have explicitly incorporated genetic relatedness in

mathematical models [68,77,85,104]. The results are in line

with the expectation that genetic relatedness simplifies collec-

tive action. However, assuming realistic population structure

and significant dispersal of offspring of one sex leads to rela-

tively low levels of within-group genetic relatedness [77,152]

and, correspondingly, low effects on collective actions.

In us versus them games, the group effort X can be viewed

as a proxy for intensity of between-group competition.

The models thus predict that the latter would increase with

larger rewards, smaller costs and higher synergicity of indivi-

dual efforts. As discussed above, the effects of group size,

within-group heterogeneity and the type of costs vary.
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(a) Applications to mammals
In mammals, collective actions mostly concern territorial be-

haviour, hunting and cooperative breeding. CAPs have been

identified in lions, wolves, dogs and many primates. For

example, capuchines are more likely to run away from territor-

ial intrusions when their group has a numeric advantage; each

one-individual increase in relative group size raises the odds of

flight by 25% [17]. Individuals also base their decisions on the

value of the territory, which is higher for the central parts of

the group’s range relative to the periphery. In capuchines, the

probability that a focal animal fled from a simulated intrusion

by a neighbouring group was 91% lower in experiments that

occurred in the centre compared with on the edge of its

group’s range, whereas the odds that it rushed to defend

its range were more than sixfold higher. Willems et al. [18]

argue that CAP affects territorial behaviour of approximately

30% of 135 social primates species in their sample, resulting

in a sub-optimal defence of a common range or territory.

Further analysis has led Willems & van Schaik [19] to conclude

that the only species that do not succumb to the CAP are those

that live in relatively small groups with few individuals of the

dominant sex, and are characterized by philopatry of this

dominant sex or are cooperative breeders.

A number of empirical studies support the prediction of

higher effort for high-rank individuals. In chimpanzees, high-

rank males travel further into the periphery during border

patrols [153] and males with higher mating success are more

likely to engage in this activity [154], which is energetically

costly [155]. In ring-tail lemurs [14] and blue monkeys [156],

high-rank females participate more in the defence of commu-

nal feeding territories than low-rank females. In meerkats,

dominant males respond more strongly to intruder scent

marks [157]. High-rank chacma baboon males are more likely

than low-rank males to join inter-group loud call displays [16].

(b) Applications to human origins
Theoretical results have some implications for the origins

of successful collective actions in human ancestors. Models

show that in games against nature, cooperation becomes

successful if the corresponding benefit/cost ratio R is high

enough, and that degree of success greatly increases with colla-

borative ability a. From a modelling perspective, successful

large-game hunting may become possible after some techno-

logical changes, such as an invention of spears, that would

increase the ability to kill large animals (reducing half-success

effort X0) and/or decrease the danger to hunters (reducing cost

parameters ci). In competition against other groups, techno-

logical innovations allowing for better defence of a valuable

territory and/or resource (increasing B) would cause increas-

ing individual efforts. Direct competition against other

groups also strongly promotes within-group collaboration.

Moreover, it is more likely to result in group extinction which

would augment this effect. Similar effects will follow worsen-

ing environmental conditions [158]. All these factors will

increase intensity of group selection which in turn would pro-

mote collaboration in both types of games. A similar effect will

be achieved by an increase in collaborative ability (increasing

a) with the emergence of language. (Gavrilets [71] models

the evolution of a explicitly). An additional factor could be

the appearance of certain behavioural strategies, as a result of

technological and/or cultural innovation. For example, raids

usually have low individual costs (low c) but large benefit
(large B) [159,160]. Adapting raids as a group strategy would

promote more efficient collaboration. Once individuals

develop abilities to cooperate effectively in some specific

types of activities (like hunting or raiding), their skills can be

successfully applied to many other collective actions.
(c) Applications to human psychology
The work reviewed here has a number of implications for

behaviour of modern humans. First, it predicts that humans

have a genetic predisposition for collaborative group activi-

ties. This is in line with a consistent observation that human

infants are motivated to collaborate in pursuing a common

goal [161] and that cooperative acts result in activation of

brain regions involved in reward processing, independently

of material gains [162]. People cooperate when groups face

failure because of external threats, e.g. harsh environmen-

tal conditions or natural disasters [163,164]. However, as

predicted by the theory above, cooperation increases dramati-

cally in the presence of direct between-group competition (see

experimental economics work discussed above) to a level

that ‘cues of group competition have an automatic or uncon-

scious effect on human behaviour that can induce increased

within-group cooperation’ [165]. A number of other obser-

vations about human psychology (e.g. in-group/out-group

biases, widespread obsession with team sports, and sex differ-

ences in the motivation to form, and skill at maintaining, large

competitive groups [166]) strongly support the idea about the

importance of between-group conflicts in shaping human

social instincts.

Existing experimental data on the effects of within-group

heterogeneity are also largely in line with theoretical pre-

dictions (see above). Additionally, it has been shown that

more competitive, individualistic players contribute more to

collective goods with group competition [167] and that indi-

viduals of high status contribute more towards group

goals [168]. Models predict that individuals who find them-

selves in a leadership position will exhibit more propensity

for pro-social and self-sacrificing actions in warfare and

other between-group competition scenarios. In line with

these expectations in some human groups, the most aggres-

sive warriors have lower reproductive success than other

men, as documented for the horticulturalist/forager Waorani

of Ecuador [169] and Nyangatom of Ethiopia [170]. The

Cheyenne war chiefs were expected to be killed in combat,

and leaders in the Nyangatom of Ethiopia, the Kapauka of

New Guinea and the Jie of Uganda all take greater risks in

combat [171,172]. The data show that the highest mortality

in the US Army in the Iraq war was among First and

Second Lieutenants, who typically lead combat patrols

[173]. In recent public goods experiments [117], actors tacitly

coordinated on the strongest group member to punish defec-

tors, even if the strongest individual incurs a net loss from

punishment. These experiments showed that an arbitrary

assignment of an individual to a focal position in the social

hierarchy can trigger changes in his/her behaviour leading

to the endogenous emergence of more centralized forms of

punishment. Note that models predict higher efforts and

costs not only for individuals who actually hold or have been

assigned high rank or status, but also for ‘potential alphas’

who have higher valuation of the prize, lower costs or higher

strength. Finally, modelling work suggests that bullish and

‘unethical’ behaviour by high-rank individuals towards their
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group-mates [174] can be accompanied by their higher

contributions towards between-group competition.

In a number of models reviewed above, members of

hierarchically structured groups align their efforts linearly pro-

portional to their shares of the reward. This suggests that

compensation proportional to the effort may be a default

human expectation for group members who are unequal

in their roles and types of contribution to a group success.

Viewed this way, models thus provide a theoretical justification

for a major postulate of the classical equity theory [175,176] that

employees seek to maintain equity between their input-to-

output ratio and that of others, and that any variation in these

ratios between group members will be viewed as unfair treat-

ment. (The theory does recognize that the ‘input’ of workers

includes many factors besides working hours, and that their

‘output’ includes many rewards besides money.)

(d) Final thoughts
Looking at the overall picture emerging from the work

reviewed here, to what extent do groups solve the CAP? The

answer naturally depends on what one means by ‘solving

the CAP’. In most cases of us versus nature games with large

enough benefit-to-cost ratio and in all cases of us versus them

games discussed above, group efforts are positive. Therefore

in a weak sense, groups almost always solve the CAP.
However, in almost all cases, some free-riding (i.e. reduced

effort of some group members) is present. Therefore in a

strong sense, groups almost always succumb to the CAP. Do

the ‘great’ get exploited by the ‘small’? The answer is yes in

the sense that they usually make a larger effort in collective

good production than the ‘small’. However, in many cases,

the ‘great’ are well compensated for their effort as their

shares of reproduction are higher than those of the ‘small’.

However, in some situations the ‘great’ get exploited to the

extreme as the logic of evolutionary processes make them effec-

tively sacrifice themselves for the benefit of their group-mates.

Theoretical predictions discussed here are directly appli-

cable only under specific sets of conditions captured by the

corresponding models. It is important to check to what

extent they hold within other approaches to studying collective

actions mentioned at the beginning of this paper.
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